Csound Ambisonics UDOs

m  Usage of the ambisonics UDOs:

The channels of the B-format are stored in a zak space. Call zakinit only once and put it outside any instrument definition, in
the orchestra file after the header. zacl clears the za space and is called after decoding. The B format of order n can be
decoded in any order <= n.

The text files “ambisonics_udos.txt”, “ambisonics2D_udos.txt”, “AEP_udos.txt” must be located in the same folder as the
csd files or included with full path.

zakinit isizea, isizek  (isizea = (order + 1)A2 in ambisonics (3D); isizea = 2-order + 1 in ambi2D; isizek = 1)

#include “ambisonics_udos.txt” (order <= 8)
kO ambi_encode asnd, iorder, kazimuth, kelevation (azimuth, elevation in degrees)
kO ambi_enc_dist asnd, iorder, kazimuth, kelevation, kdistance
al [,a2] ... [, a8] ambi_decode iorder, ifn
al [,a2] ...[,a8] ambi_dec_inph iorder, ifn
fifn 0 n -2 pl azlell az2el2 ... (n is a power of 2 greater than 3-number_of_spekers + 1) (p1 is not used)
kO ambi_write_B “name”, iorder, ifile_format (ifile_format see fout in the csound help)
kO ambi_read_B “name”, iorder (only <= 5)
kaz, kel, kdist Xyz_to_aed kx, ky, kz

;#include “ambisonics2D_udos.txt”  (any order)

kO ambi2D_encode asnd, iorder, kazimuth (azimuth in degrees)
kO ambi2D_enc_dist asnd, iorder, kazimuth, kdistance

al [,a2] ...[,a8] ambi2D_decode iorder, kazl [, kaz2] ... [, kaz8]

al [,a2] ...[,a8] ambi2D_dec_inph iorder, kaz1 [, kaz2] ... [, kaz8] (order <= 12)

kO ambi2D_write_B “name”, iorder, ifile_format

kO ambi2D _read_B “name”, iorder (order <= 19)

kaz, kdist xy_to_ad kx, ky

#include “AEP_udos.txt” (any order integer or fractional)

al [,a2] ...[,al6] AEP_xyz asnd, korder, ifn, kx, ky, kz, kdistance
fifn 0 64 -2 max_speaker_distance x1 y1 z1 x2 y2 z2 ...

al [,a2] ...[,a8] AEP asnd, korder, ifn, kazimuth, kelevation, kdistance (azimuth, elevation in degrees)
fifn 0 64 -2 max_speaker_distance azl ell distl az2 el2 dist2 ... (azimuth, elevation in degrees)

#ambi_utilities

kdist dist kx, ky
kdist dist kx, ky, kz
ares Doppler asnd, kdistance
ares absorb asnd, kdistance
kx, ky, kz aed_to_xyz kazimuth, kelevation, kdistance
ix, iy, iz aed_to_xyz iazimuth, ielevation, idistance
al [,a2] ...[,al6] dist_corr al [,a2]...[,al6],ifn
fifn 0 32 -2 max_speaker_distance distl, dist2, ... (distances in m)
irad radiani idegree
krad radian kdegree
arad radian adegree
idegree degreei irad
kdegree degree krad

adegree degree arad
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= Introduction

In the following introduction we will explain the principles of ambisonics step by step and write an opcode for every step.
The opcodes above combine all the functionalities described. Since the two-dimensional analogy to Ambisonics is easier to
understand and to try out with a simple equipment we will explain it first and at full length.

Ambisonics is a technique of three-dimensional sound projection. The information about the recorded or synthesized sound
field is encoded and stored in several channels, taking no account of the arrangement of the loudspeakers for reproduction.
The encoding of a signal's spatial information can be more or less precise, depending on the so-called order of the algorithm
used. Order zero corresponds to the monophonic signal and requires only one channel for storage and reproduction. In firsz-
order Ambisonics, three further channels are used to encode the portions of the sound field in the three orthogonal directions
x,y and z. These four channels constitute the so-called first-order B-format. When Ambisonics is used for artificial spatializa-
tion of recorded or synthesized sound, the encoding can be of an arbitrarily high order. The higher orders cannot be inter-
preted as easily as orders zero and one.

In a two-dimensional analogy to Ambisonics (called Ambisonics2D in what follows), only sound waves in the horizontal
plane are encoded.

The loudspeaker feeds are obtained by decoding the B-format signal. The resulting panning is amplitude panning, and only
the direction to the sound source is taken into account.

The illustration below shows the principle of Ambisonics. First a sound is generated and its position determined. The
amplitude and spectrum are adjusted to simulate distance, the latter using a low-pass filter. Then the Ambisonic encoding is
computed using the sound's coordinates. Encoding mth order B-format requires n = (m + 1)*> channels (n = 2m + 1 channels
in Ambisonics2D). By decoding the B-format one can obtain the signals for any number (>= n) of loudspeakers in any
arrangement. Best results are achieved with symmetrical speaker arrangements.

If the B-format does not need to be recorded the speaker signals can be calculated at low costs and arbitrary order using so-
called ambisonics equivalent panning (AEP).
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= Ambisonics2D

We will first explain the encoding process in Ambisonics2D. The position of a sound source in the horizontal plane is given
by two coordinates. In Cartesian coordinates (x, y) the listener is at the origin of the coordinate system (0, 0), and the x-
coordinate points to the front, the y-coordinate to the left. The position of the sound source can also be given in polar
coordinates by the angle i between the line of vision of the listener (front) and the direction to the sound source, and by their
distance r. Cartesian coordinates can be converted to polar coordinates by the formulas

r=4x* + y* and ¢ = arctan(x, y),

polar to Cartesian coordinates by

x =r-cos(yy) and y = r-sin(})).
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The Oth order B-Format of a signal S of a sound source on the unit circle is just the monosignal: W, = W = §. The first order
B-Format contains two additional channels: W | = X = S-cos(¥y) = S-x and W, , = Y = S'sin(yy) = Sy, i.e. the product of the
Signal S with the sine and the cosine of the direction ¢ of the sound source. The B-Format higher order contains two addi-
tional channels per order m: W,, | = S-cos(my) and W, » = S-sin(my).

W() =S

Wii1=X=S-cos(yy)=Sx Wi,=Y=_8sin(y) =Sy
Wz’ 1= S'COS(2¢) Wz, 2= Ssm(21ﬁ)

W1 = S-cos(my) W2 = S-sin(my)

From the n = 2m + 1 B-Format channels the loudspeaker signals p; of n loudspeakers which are set up symmetrically on a
circle (with angle ¢;) are:

i . .
pi = (Wo +2Wy 1c08( ;) + 2W 2sin( ;) + 23, 1€08(2 ¢;) + 2W3,58In(2 ;) + ...)

2.1 . )
==(5 Wo+ Wi icos( ;) + Wi asin( @) + W3, 1008(2 ¢;) + W psin(2 ;) +...)

(If more than n speakers are used, we can use the same formula)

In the Csound example udo_ambisonics2D_1.csd the opcode ambi2D_encode la produces the 3 channels W, X and Y (a0,
all, al2) from an input sound and the angle ¢ (azmuth kaz), the opcode ambi2D_decode 1 8 decodes them to 8 speaker
signals al, a2, ..., a8. The inputs of the decoder are the 3 channels a0, all, al2 and the 8 angles of the speakers. ( - udo_am-
bisonics2D_1)

The B-format of all events of all instruments can be summed before decoding. Thus in the example udo ambisonic-
s2D_2.csd we create a zak space with 21 channels (zakinit 21, 1) for the 2D B-format up to 10th order where the encoded
signals are accumulated. The opcode ambi2D_encode 3 shows how to produce the 7 B-format channels a0, all, al2, ..., a32
for third order. The opcode ambi2D_encode n produces the 2(n+1) channels a0, all, al2, ..., n32 for any order n (needs
zakinit 2(n+1), 1). The opcode ambi2D_decode basic is an overloaded function i.e. it decodes to n speaker signals depend-
ing on the number of in- and outputs given (in this example only for 1 or 2 speakers). Any number of instruments can play
arbitrary often. Instrument 10 decodes for the first 4 speakers of a 18 speaker setup.

= In-phase Decoding

The left figure below shows a symmetrical arrangement of 7 loudspeakers. If the virtual sound source is precisely in the
direction of a loudspeaker, only this loudspeaker gets a signal (center figure). If the virtual sound source is between two
loudspeakers, these loudspeakers receive the strongest signals, all other loudspeakers have weaker signals, some with
negative amplitude, that is, reversed phase (right figure).
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To avoid having loudspeaker sounds that are far away from the virtual sound source and to ensure that negative amplitudes
(inverted phase) do not arise, the B-format channels can be weighted before being decoded. The weighting factors depend on
the highest order used (M) and the order of the particular channel being decoded ().

MY

Em = (M +m)!-(M —m)!

M 81 53 83 8a 85 86 87 8s
1 1 0.5
2 1 10.666667 [0.166667
3 1 0.75 03 0.05
4 1 0.8 04 0.114286 |0.0142857
5 110.833333 | 0.47619 |0.178571 | 0.0396825 | 0.00396825
6 1]0.857143 10.535714 10.238095 [0.0714286 | 0.012987 |0.00108225
7 1 0.875 ]0.583333 10.291667 |0.1060601 | 0.0265152 |0.00407925 |0.000291375
8 110.888889 [0.622222 10.339394 | 0.141414 | 0.043512 0.009324 0.0012432 [0.0000777
The decoded signal can be normalized with the factor g, (M) = %
M 1 2 3 4 5 6 7 8
Gnorm(M) | 1 10.75 10.625 | 0.546875 [ 0.492188 [ 0.451172 | 0.418945 [ 0.392761

The illustration below shows a third-order B-format signal decoded to 13 loudspeakers first uncorrected (so-called basic
decoding, left), then corrected by weighting (so-called in-phase decoding, right).
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Example udo_ambisonics2D_3.csd shows in-phase decoding. The weights and norms up to 12th order are safed in the arrays
iWeight2D[][] and iNorm2DJ[] respectively. Instrument 11 decodes third order for 4 speakers in a square.
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= Distance

In order to simulate distances and movements of sound sources, the signals have to be treated before being encoded. The
main perceptual cues for the distance of a sound source are reduction of the amplitude, filtering due to the absorbtion of the
air and the relation between direct and indirect sound. We will implement the first two of these cues. The amplitude arriving
at a listener is inverse proportional to the distance of the sound source. If the distance is larger than the unit circle (not
necessarily the radius of the speaker setup, which does not need to be known when encoding sounds) we simply can divide
the sound by the distance. With this calculation inside the unit circle the amplitude is amplified and becomes infinite when
the distance becomes zero. Another problem arises when a virtual sound source passes the origin. The amplitude of the
speaker signal in the direction of the movement suddenly becomes maximal and the signal of the opposite speaker suddenly
becomes zero. A simple solution for these problems is to limit the gain of the channel W inside the unit circle to 1 (f7 in the
figure below) and to fade out all other channels (f2). By fading out all channels except channel W the information about the
direction of the sound source is lost and all speaker signals are the same and the sum of the speaker signals reaches its
maximum when the distance is 0.

gain

fl = 2 = I/dist

f2 =dist

‘1 ﬁ é dist
Now, we are looking for gain functions that are smoother at d = 1. The functions should be differentiable and the slope of f7
at distance d = 0 should be 0. For distances greater than 1 the functions should be approximately 1/d. In addition the function
f1 should continuously grow with decreasing distance and reach its maximum at d = 0. The maximal gain must be 1. The
function atan(c-d'n/2)/(c-d-n/2) fulfills these constraints. We create a function f2 for the fading out of the other channels by

multiplying f7 with the factor (1 —e™9).

gain
1
f=-
1 d
f atan(d -7 /2)
fle——
fl d-z/2
, atan(d -7 |2)
St R=(-e)———

d-r]2

/ I I I I L dist
5

..... with parameters

In example udo_ambisonics2D_4 the UDO ambi2D_enc_dist_n encodes a sound at any order with distance correction. The
inputs of the UDO are asnd, iorder, kazimuth, kdistance. If the distance becomes negative the azimuth angle is turned to its
opposite (kaz += m) and the distance taken positive.

In order to simulate the absorption of the air we introduce a very simple lowpass filter with a distance depending cutoff
frequency. We produce a Doppler-shift with a distance dependent delay of the sound. Now, we have to determine our unit
since the delay of the sound wave is calculated as distance devided by sound velocity. In our example udo_ambisonic-
s2D_5.csd we set the unit to 1 meter. These procedures are performed before the encoding. In instrument 1 the movement of
the sound source is defined in Cartesian coordinates. The UDO xy to_ad transformes them into polar coordinates. The B-
format channels can be written to a sound file with the opcode fout. The UDO write_ambi2D_2 writes the channels up to
second order into a sound file.
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= Ambisonics (3D)

The position of a point in space can be given by its Cartesian coordinates x, y and z or by its spherical coordinates the radial
distance r from the origin of the coordinate system, the elevation ¢ (which lies between — and 7) and the azimuth angle 6.

Elevation

Azimuth 6

The formulas for transforming coordinates are as follows:

x = r-cos(0)cos(6) y = r-cos(6)sin(6) z = r-sin(0)

xz 2
r=yx2+y* + 22 6 = arctan(y/x) o= arccot[%]

The channels of the Ambisonic B-format are computed as the product of the sounds themselves and the so-called spherical
harmonics representing the direction to the virtual sound sources. The spherical harmonics can be normalized in various
ways. We shall use the so-called semi-normalized spherical harmonics. The following table shows the encoding functions up
to the third order as function of azimuth an elevation Y, (6, ) and as function of x, y and z ¥,,, (x, y, z) for sound sources on
the unit sphere. The decoding formulas for symmetrical speaker setups are the same.



m|n Y (0, 6) Y (X, Y, 2)
o Sinfo] z
1 Cos[d] Cos[6] X
1 Cos[0] Sin[f] y
2| o S (-1 + 38in[6P) S (1437
1 - V3 Cosld] Sin[2 5] V3 xz
-1 —; V3 Sin[2 6] Sin[6] V3 yz
2 2 V3 Cosl] Cos[26] S(V3 -3y
) V3 Cos[6]? Cos[6] Sin[6] V3 xy
3o < (3Sin[6] - 5 Sin[3 ) Sz2(-3+52)
e \/g (Cos[8] - 5 Cos[3 81) Cos[A] < (—«/? x+5V6 x7)
-1 —; \/g (Cos[6] - 5 Cos[3 6]) Sin[6] i (—\/? y+5v6 yzz)
2 —;\/15 Cos[8]? Cos[2 0] Sin[5] —;( 15 2-2v15 y2z—- 15 z3)
—2| V15 Cos[6]* Cos[6] Sin[5] Sin[6] V15 xyz
3 S \/§C05[6]3 Cos[3 6] S (V10 ¥ -3V10 xy2)
-3 S \/chs[(sP Sin[3 4] S (3V10 2y - V10 y3)
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In the first 3 of the following examples we will not produce sound but display in number boxes the amplitude of 3 speakers
at positions (1, 0, 0), (0, 1, 0) and (0, 0, 1) in Cartesian coordinates. The position of the sound source can be changed with
the two scroll numbers. The example udo_ambisonics_1.csd shows encoding up to second order. The decoding is done in
two steps. First we decode the B-format for one speaker. In the second step, we create a overloaded opcode for n speakers.
The number of output signals determines which version of the opcode is used. The opcodes ambi_encode and ambi_decode
up to 8th order are saved in the text file “ambisonics_udos.txt”.

Example udo _ambisonics_2.csd shows in-phase decoding. The weights up to 8th order are safed in the arrays iWeight3D[][].

The weighting factors for in-phase decoding of Ambisonics3D are:

M 81 53 83 8a 8s 86 87 8s

1 1]0.333333

2 1 0.5 0.1

3 1 0.6 02 0.0285714

4 1[0.666667 [0.285714 10.0714286 [0.00793651

5 110.714286 [0.357143 | 0.119048 | 0.0238095 | 0.0021645

6 1 0.75 0416667 | 0.166667 | 0.0454545 10.00757576 |0.000582751

7 110.777778 10.466667 | 0.212121 | 0.0707071 0.016317 0.002331 0.0001554

8 1 0.8 0.509091 | 0.254545 | 0.0979021 0.027972 | 0.00559441 [0.000699301 |0.000041135

Example udo _ambisonics_3.csd shows distance encoding.

In example udo_ambisonics 4.csd a buzzer with the three-dimensional trajectory shown below is encoded in third order and
decoded for a speaker setup in a cube (f17).
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= Ambisonics Equivalent Panning (AEP)

If we combine encoding and in-phase decoding, we obtain the following panning function (a gain function for a speaker
depending on its distance to a virtual sound source)

P(y, m)= (—; + —; cosy)"

where y denotes the angle between a sound source and a speaker and m denotes the order. If the speakers are positioned on a
unit sphere the cosine of the angle y is calculated as the scalar product of the vector to the sound source (x, y, z) and the
vector to the speaker (xs, Vs, zs)-

In contrast to Ambisonics the order indicated in the function does not have to be an integer. This means that the order can be
continuously varied during decoding. The function can be used in both Ambisonics and Ambisonics2D.

This system of panning is called Ambisonics Equivalent Panning. It has the disadvantage of not producing a B-format
representation, but its implementation is straightforward and the computation time is short and independent of the Ambison-
ics order simulated. Hence it is particularly useful for real-time applications, for panning in connection with sequencer
programs and for experimentation with high and non-integral Ambisonic orders.

The opcode AEPI in the example udo AEP.csd shows the calculation of ambisonics equivalent panning for one speaker.
The opcode AEP then uses AEP1 to produce the signals for several speakers. In the text file “AEP udos.txt” AEP ist
implemented for up to 16 speakers. The position of the speakers must be written in a function table. As the first parameter in
the function table the maximal speaker distance must be given.

m Utilities

dist computes the disance from the origin (0, 0) or (0, 0, 0) to a point (X, y) or (X, Y, )
kdist dist  kx, ky
kdist dist  kx, ky, kz

Doppler simulates the Doppler-shift
ares  Doppler asnd, kdistance

absorb is a very simple simulation of the frequency dependant absorption
ares  absorb asnd, kdistance

aed_to_xyz converts polar coordinates to Cartesian coordinates
kx, ky, kz aed to xyz  kazimuth, kelevation, kdistance
ix, 1y, iz aed to xyz  iazimuth, ielevation, idistance

dist_corr induces a delay and reduction of the speaker signals relativ to the most distant speaker.
al [,a2] ... [, al6] dist_corr al [, a2] ... [, al6], ifn
fifn 0 32 -2 max speaker distance distl, dist2, ... (distances in m)



radian (radiani) converts degrees to radian

irad radiani

krad radian

arad radian

degree (degreei) converts radian to degrees
idegree degreei

kdegree degree

adegree degree

= Standard speaker setups

idegree
kdegree
adegree

irad
krad
arad
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