

Digital Sound Generation

Beat Frei

Institute for Computer Music and Sound Technology (ICST)

Zurich University of the Arts

Baslerstrasse 30, CH-8048 Zürich, Switzerland

beat.frei@zhdk.ch, http://www.icst.net

Preface

This online book presents advanced techniques for digital sound generation in electronic

musical instruments with focus on the discussion and realization of popular building blocks

using industrial grade algorithms.

It has been written to serve as a reference for synthesizer development as well as to support

university level courses on audio signal processing and computer music.

The reader is assumed to be familiar with the basics of sound synthesis and signal theory.

While a graphical time-frequency viewpoint based on convolution and sampling is

emphasized to explain the foundations, analysis and implementation occasionally involve

higher mathematics or technical computing tools.

Happy reading!

Digital Sound Generation Beat Frei, 10-07-19, ICST 2/85

Table of Contents

1 Main Oscillators ... 3

1.1 Generic Oscillator and Definitions... 3

1.2 Analog versus Digital... 4

1.3 Computation-Friendly Bandlimited Impulse ... 6

1.4 Sample-Based Oscillator .. 9

1.5 Virtual Analog (VA) Oscillators .. 15

1.6 Noise Generation.. 23

1.7 Sinusoidal Oscillators... 24

1.8 Ring Modulation .. 28

1.9 FM Synthesis.. 30

1.9.1 Principles.. 30

1.9.2 Feedback... 33

1.9.3 Complex Modulators.. 36

1.10 Wavetable Oscillator .. 41

1.11 Hard Synchronization... 46

2 Alternative and Specialized Oscillators ... 52

2.1 Sinusoidal Oscillators based on Second Order Systems .. 52

2.1.1 Coupled Form Oscillator .. 52

2.1.2 Direct Form Oscillator ... 53

2.1.3 Chamberlin Oscillator .. 54

2.2 Oscillators based on Discrete Summation Formulae (DSF) 55

2.3 Oscillators based on Integrated Prototype Signals ... 58

2.3.1 Differentiated Parabolic Wave (DPW) Oscillator.. 58

2.3.2 Segment-Based Integrated Prototype Signal (SIPS) Oscillator 61

2.4 Oscillators based on Polynomial Shaping (PS).. 64

2.4.1 Chebyshev Polynomial Shapers ... 64

2.4.2 Polynomial-Shaped Triangle Oscillator ... 65

2.4.3 Higher Function Shapers.. 66

2.5 Phase Distortion (PD)... 68

2.6 Oscillators based on Windowed Segments .. 70

2.6.1 Principles.. 70

2.6.2 VOSIM... 71

2.6.3 Modified VOSIM Formant Train Oscillator .. 73

2.6.4 Wide Formant Oscillator (WFO) ... 74

2.6.5 Variable Width Formant Oscillator (VWFO) .. 75

2.6.6 WSO-BLIT Oscillator .. 76

2.6.7 FOF... 78

2.6.8 Remarks on Windowed Segment Oscillators and Formants 79

Appendix A: Oscillator Selection Guide.. 80

Appendix B: MATLAB Code .. 81

1. Bandlimited Impulse Generation using the Windowed Sinc Method...................... 81

2. Compensation Filter for the High-Frequency Drop of the Bandlimited Impulse 82

3. Bandlimited Sawtooth Segment Generation .. 83

Appendix C: Miscellaneous ... 84

1. DC Trap.. 84

2. Frequency Update .. 84

Appendix D: References .. 85

Digital Sound Generation Beat Frei, 10-07-19, ICST 3/85

1 Main Oscillators

1.1 Generic Oscillator and Definitions

Many digital oscillators share a generic topology: A phase accumulator generates a simple

sawtooth with frequency and phase control, a frequency dependent memoryless function maps

it to the desired shape, and an optional postfilter tailors the high frequency spectrum (Fig.1).

Fig. 1: Generic Digital Oscillator Topology

fo = Fundamental Frequency

fs = Sample Rate (Default: 48 kHz. Double rate systems: 96 kHz.)

T = Sampling Interval = 1/fs

fn = 2Nfo/fs (Normalized Fundamental Frequency, ubiquitously used)

φ = Phase shift in radians · N/π

z
-1

 = Delay of one T. Output changes in discrete time steps.

wrap(x) = x-2N if x ≥ N, x+2N if x < -N, x otherwise, repeat until the result is

within [-N, N) (Default: N = 1)

Important: Wrap(x) is inherent to the addition of integer data types in

processors. No further operations are required if the two’s complement

wrap-around is exploited by setting N to 2
(word size of data type in bits - 1)

.

y(x) = Full cycle of a mapper function. Examples: Sine, wavetables selected

according to f, polynomial y(x) with coefficients c(f).

Fig. 2: Signals in the Generic Oscillator for y = sin(πx/N), φ = -N, no Postfilter

All signals are shown from a macroscopic perspective. Actually, they are number sequences

changing in discrete time steps of the sampling interval T. In the next section we are going to

discuss what difference that makes.

wrap wrap

φ

y(x)
C B A

z
-1

 fn

t

B

A

C

zoom

T

N-ε

-N

-N
N-ε

Digital Sound Generation Beat Frei, 10-07-19, ICST 4/85

1.2 Analog versus Digital

Unlike analog circuitry, digital oscillators are discrete time systems and therefore have a

spectrum periodic in the sample rate fs. It is found by viewing the output as a sampled version

of a continuous time signal, whose two-sided spectrum is superimposed at integer multiples of

fs by the sampling process. A component at fo in the continuous signal leads to additional ones

at |Nfs ± fo| with N integer in the oscillator output. If these artefacts fall into the audio band,

aliasing occurs that is generally not removable and perceived as unwanted tones. Fig. 3 shows

a continuous time sawtooth and its discrete time representation including aliasing, whose

psychoacoustical relevance will be discussed on the basis of selected components a-d.

Fig. 3: Continuous Sawtooth with fo = 5 kHz sampled at fs = 48 kHz

In practice, some aliasing is tolerable due to negligible signal power and auditory masking: In

the presence of a strong tone, higher pitched weak tones are inaudible. For lower pitched

tones, this effect diminishes rapidly and becomes negligible at intervals larger than an octave

(Fig. 4). A coarse analysis of the sampled sawtooth from an auditory perspective yields:

a) Aliased 9
th

 harmonic of the original: fs - 9fo = 3 kHz. Audible.

b) Aliased 7
th

 harmonic of the original: fs - 7fo = 13 kHz. Partially masked by the 2
nd

harmonic of the original. Human pitch perception is imprecise at the top of the audio

band, so this component has a chance to pass as “general highs”. Your ears decide.

c) Aliased 5
th

 harmonic of the original: fs - 5fo = 23 kHz. Inaudible.

d) Aliased 19
th

 harmonic of the original: 2fs - 19fo = 1 kHz. Audible. An ad-hoc

transposition of Fig. 4 suggests that this component should be at least 80 dB down

relative to the original to become inaudible.

Conclusion: Spectral components of the continuous original that are close to integer multiples

of fs will lead to audible and objectionable low frequency aliasing when the signal is sampled.

The effect is most distinct for aliased components falling below the fundamental frequency fo.

Digital Sound Generation Beat Frei, 10-07-19, ICST 5/85

Fig. 4: Auditory Threshold in the Presence of a Narrow Band Signal at 1 kHz

Ref.: E. Zwicker, R. Feldtkeller: Das Ohr als Nachrichtenempfänger. (1967)

Practical experience shows that a synthesizer should be able to generate tuned sounds with a

fundamental up to 4-5 kHz at excellent quality, whereas higher frequency signals are mainly

used as less critical modulators or sources of harmonics. Summarizing the foregoing we can

state an empirical design rule for a continuous time prototype signal (see also Fig. 5):

• Desired spectrum up to 20 kHz.

• Roll-off as steep as possible within given constraints.

• Below -80 dB at fs – 2 kHz

• Below -85 to -90 dB at fs – 1 kHz

• Roll-off from fs – 1 kHz to infinity by at least -20 dB/decade (≈ 6 dB/octave)

Fig. 5: Spectrum of a continuous time prototype signal and its discrete time representation

including 1
st
 and 2

nd
 order aliased components (red, orange)

0 fs 2fs

Amplitude in dB

-20
-40
-60
-80

-100

-90 dB @ fs-1kHz

-80 dB @ fs-2kHz

-fs -2fs 20 kHz

-60
-40
-20

-100
-80

audible

Digital Sound Generation Beat Frei, 10-07-19, ICST 6/85

1.3 Computation-Friendly Bandlimited Impulse

Now that the requirements for a continuous time prototype signal are known, we choose the

most elemental function that meets them and derive more complicated signals from it.

A good starting point is the Dirac delta impulse with its flat spectrum up to infinity. When we

send it through a filter with the frequency response of Fig. 5, the output spectrum is an exact

copy of the response while the signal itself is the sought-after bandlimited impulse b(t). Since

the computational effort for many algorithms based on b(t) is proportional to its length in

sampling intervals T, it should be as short as possible.

Theoretically, we could use a brickwall filter with infinite attenuation outside the audio band,

but the resulting impulse would be the slowly decaying Sinc function. A popular solution is to

limit the impulse in time by weighting it with a finite-length window function [11]:

1. Take the impulse response of a brickwall filter with a cut-off frequency fc = 20 kHz

and the sample rate fs: () ()
()sc

sc
sc

ff

ff
ffSinctg

/

/sin
/)(

π

π
π ==

2. Choose a parametric window w(t,β) with low side lobes.

3. Calculate b(t) = w(t, β)g(t) and its spectrum.

4. Repeat steps 1 to 3 tweaking β and fc until you get the desired stopband attenuation.

5. Adjust fc slightly to maximize the attenuation around fs.

6. Consider apodization (using a second window that widens the top of the main

window) to tailor the transition band.

7. (Optional: Resort to the Parks-McClellan algorithm for utmost performance.)

Examples for lengths 4T and 10T with T = 1/fs and fs = 48 kHz using a Kaiser window are

given in Fig. 6-8. Refer to appendix B1 for MATLAB code.

Fig. 6: Bandlimited Impulse (Length = 4T, fs = 48 kHz, fc = 15 kHz, normalized)

Main Window: Kaiser (β = 8.3), Apodizing Window: 1- 0.5·Kaiser (β = 0.5)

The signal shown in Fig. 6 is suitable for virtual analog oscillators where compactness is

crucial. Since not the impulse itself but its time integral with less high frequency content is

actually used, the requirements for stopband attenuation are reduced.

Digital Sound Generation Beat Frei, 10-07-19, ICST 7/85

We have to equalize the rounded passband edges to avoid a dull sound. A postfilter or

preemphasis works best if the drop does not exceed 10 dB at 20 kHz, however, this is not

overly critical. We might conservatively lower fc in the 4-sample impulse to further reduce

susceptibility to aliasing and accept stronger filter action.

Fig. 7: Bandlimited Impulse (Length = 10T, fs = 48 kHz, fc = 20 kHz, normalized)

Main Window: Kaiser (β = 9), no Apodization

Fig. 8: Bandlimited Impulse (Length = 10T, fs = 48 kHz, fc = 18.3 kHz, normalized)

Main Window: Kaiser (β = 9), Apodizing Window: 1- 0.9·Kaiser (β = 0.7)

A comparison of Fig.7 and 8 shows the effect of apodization. Higher attenuation at the

beginning of the stop band at the expense of a slower roll-off results in a spectral profile

which is especially suitable for sample-based oscillators.

So far, we looked at continuous time impulses. As they are hard to calculate and polynomial

approximations lead to a large number of terms, it seems favourable to tabulate them. A single

table look-up is very attractive compared to interpolation-based techniques with their typically

Digital Sound Generation Beat Frei, 10-07-19, ICST 8/85

3 to 5 times higher operations count and 2 to 3 times longer processing time on contemporary

computing platforms. However, this approach is often deemed impractical, which is true for

systems intended to process arbitrary audio signals. But, how does it perform under the

specific requirements for oscillators in musical instruments?

First, we look at the spectral difference between a continuous signal and its tabulated

representation assuming that a table read is performed by truncating or rounding a continuous

time pointer to form an integer index. N denotes the number of table entries per sampling

interval T.

Fig. 9: Spectral consequences of converting a continuous signal to a table intended for

nearest neighbor look-up, N = 4 table entries per sampling interval T

Reading the table at a certain rate fr in a digital oscillator corresponds to sampling the signal

g3(t) at fr, hence spectral components around integer multiples of fr are fold down into the

audio band. In the next step, we calculate the relative amount of aliasing as a root mean

square ratio γ for a component of the frequency fo in the continuous non-tabulated original

under the condition fr ≈ fs.

Sampling at Nfs

t

g1(t)

f

|G1(f)|

Time Domain Frequency Domain

k

g2[kτ]

f

|G2(f)|

t f

|G3(f)| g3(t)

Convolve with Rect(t/τ)

τ = 1/(Nfs)

Multiply by |Sinc(πfτ)|

Nfs 2Nfs 0 -Nfs -2Nfs

Nfs 0 fs

T = 1/fs

Digital Sound Generation Beat Frei, 10-07-19, ICST 9/85

A direct evaluation using πfoτ << 1 as required in any practical application yields for each of

the two components aliased down from kNfs:

[]()
()

[]()
[]

()
[] s

o

os

o

os

os

o

os

s
kNf

f

fkNf

f

fkNf

fkNf

fSinc

fkNfSinc
≈

±
=

±

±
≈

±
=

πτ

τπ

πτ

πτ

τπ

πτ
γ

sinsin

Aliased components can be assumed to have non-coincidental frequencies. Therefore, we sum

up their power to get an upper bound for the total amount:

()

s

o

s

o

k s

o

o

RMS

Nf

f

Nf

f

kNf

f

f

aliasedG 8.1

3
2

|)(G| 1

2

3

3
≈⋅=








≤= ∑

∞

=

π
γ (Eq. 1)

Eq. 1 paves the way to determine the minimum required size of a look-up-table from the

spectrum of the non-tabulated original signal. Although we stated fr ≈ fs, it’s not hard to see

that it also provides a safe estimate for fr > fs. In case of fr < fs, the components around kNfs

may be aliased down multiple times resulting in a worst case increase of 3 dB for doubling the

ratio fs/fr. In practice, this is rarely important, because aliased components arising from

undersampling of the base band will almost always dominate.

Summary: Aliasing from reading tabulated signals without interpolation affects the entire

audio band. It should be kept below -85 to -90 dB in musical instruments according to Fig. 4.

The amount generated by a spectral component of the original signal is proportional to its

frequency and amplitude.

Example 1: Professional sample rate converter. 100 dB SNR for any signal up to 20 kHz,

M = 100 filter taps. Table size = MN = 1.8Mfo/(γfs) = 7500000, impractical.

Example 2: Sample-based oscillator. 97 dB SNR for an original component at 1 kHz and

85 dB for one at 4 kHz. Components at higher frequencies have lower levels in

tuned sounds while noisy sounds are less critical with respect to perceived

aliasing. When the sampled signal gets weaker, the aliased part proportionally

decreases (in contrary to the constant noise floor of a converter or linear audio

circuitry). Impulse length = 10T. Table size ≈ 26500, can be halved exploiting

symmetry, fits into a CPU cache or the internal memory of a low-cost DSP.

Now that we know how to create bandlimited impulses and store them adequately, we are

finally ready to design some oscillators!

1.4 Sample-Based Oscillator

This oscillator class works by playing a frequency-transposed version of a sampled sound. It’s

still the most common technique to emulate genuine musical instruments in a synthesizer. A

big plus is the precise reproduction of any audio snapshot; major drawbacks are a repetitive

character and the inability to inherently produce natural transitions.

The principles of work are straightforward: Consider a signal of frequency fo and duration to

in the original data that has been sampled at fs corresponding to an interval T = 1/fs. In the

oscillator, the data is reconstructed, resampled at an interval Tnew = T/2, and played back at fs.

As a result, the duration increases to 2to while the number of cycles remains the same. Thus,

the frequency of this time-stretched signal has changed to fo/2. Fig. 10 depicts the procedure

for an arbitrary transposition factor α = fnew/fo.

Digital Sound Generation Beat Frei, 10-07-19, ICST 10/85

Fig. 10: Down Transposition in a Sample-Based Oscillator

including Aliasing from Non-ideal Filtering

|Soriginal(f)

|

Filtering (non-ideal)

fs 0 2fs

f

t

s2(t)

k

soriginal[kT]

|S2(f)|

fs 0 2fs

f

Resampling at an interval Tnew = αT

T = 1/fs

0

f

|S3(f)|

fs/α

Playback at fs � T = 1/ fs

Tnew = αT

k

s3[kTnew]

stransposed[kT] |Stransposed(f)|

f

0 fs T = 1/fs

Time Domain Frequency Domain

fo

fo

fo

αfo

k

Digital Sound Generation Beat Frei, 10-07-19, ICST 11/85

Fig. 10 allows us to analyze the limitations and requirements of a sample-based oscillator.

First, we have a look at down transposition (α < 1):

If the filtered signal does not contain any significant components above fs – fo, there will be

no audible aliasing in the transposed signal. The worst case occurs for α ≈ 1 where the

requirements become the same as for the bandlimited impulse. Thus, the spectral response of

any of the impulses designed in section 1.3 will fit our needs. This is important as filtering

will be achieved in the oscillator by convolving such an impulse with the original signal,

which corresponds to multiplying the spectrum of the original signal with the impulse

spectrum. Another point is that the original spectrum usually gets limited to 20 kHz in the

recording process. Since we expect a minimum bandwith of 15 kHz for high quality audio,

α must be at least 0.75.

For up transposition (α > 1), the situation is more complicated (Fig. 11):

At fs/α < 2fo, aliasing is inevitable with a computational-friendly constant length impulse,

but transposition may still move it out of the audio band. The limiting condition becomes

fs – αfo > 20 kHz, restricting α to below 1.4 for fo < 20 kHz and fs = 48 kHz.

Fig. 11: Aliasing in Up Transposition

In practice, some aliasing is tolerated as it enters the audio band at the top and subsides with

increasing α. In addition, tuned sounds tend to have low energy at high frequencies. However,

aliasing that falls below the fundamental (max. 4 kHz) quickly becomes objectionable, which

is the case for fs/α – fo < 4 kHz. For fo = 20 kHz and fs = 48 kHz, a range of α = 1.4 to 2

results. (Higher factors are accessible easiest by holding near-ideally lowpass filtered and up

transposed versions of the original audio data in memory [18].) At last, the filter in the first

step must have enough attenuation not to compromise quality taking the spectral roll-off of

tuned sounds into account. Example: For fs = 48 kHz and α = 1.4, an original component at

13.7 kHz is filtered at 34.3 kHz and aliased to 0 kHz in the transposed signal. This component

can safely be estimated at least 20 dB down relative to the fundamental in the original signal,

hence the filter specifications are relaxed towards higher frequencies. The spectral profile in

Fig. 8 has proven to perform very well in musical applications.

The following part deals with the implementation of the oscillator. Interestingly, the steps in

Fig. 10 can be executed all at once using a bandlimited impulse! A non-interpolated table-

based impulse requires about 20 kWords of memory and provides optimum speed. If the

hardware runs out of fast memory, consider a linearly interpolated table (≈ 500 elements) at

the expense of roughly doubling the operations count [18]. In case both sample look-ups and

memory are costly, polynomial interpolation [17] and Farrow filters are viable alternatives.

The oscillator works as shown in Fig. 12:

Filtering is accomplished by convolving a bandlimited impulse with the sampled original

data. The resulting continuous function is then evaluated at the resampling points. Luckily,

there’s no need to leave the discrete time domain as the above procedure is equivalent to

sliding the impulse over the original signal and calculating a sum of products at these points.

|S3(f)|

0 fo fs/α

f

Digital Sound Generation Beat Frei, 10-07-19, ICST 12/85

Fig. 12: Sliding Window Process of a Sample-Based Oscillator

To generate the output of the oscillator, we just advance the impulse in intervals αT and

evaluate the sum of products. In the actual algorithm, the bandlimited impulse of Fig. 8 is read

from a table. Hence, we need to calculate its minimum size using Eq. 1. If we aim to keep

table-induced aliasing below -85 dB for a component at 4 kHz in the original data, we obtain:

N = 10·1.8·4000/(48000·5.6·10
-5

) = 26786

For the oscillator algorithm to be efficient, the table must have 2
M

 entries per sampling

interval. Therefore, we relax the requirements somewhat and choose N = 10·2048 = 20480

which results in a noise level of -83 dB @ 4 kHz and -95 dB @ 1 kHz relative to the desired

signal. Because the impulse is symmetrical, only 10240 entries have to be stored.

k

soriginal[kT]

t

*

Bandlimited Impulse

(symmetrical)

The sum of the weighted impulses at this point

equals the filtered signal value s2(t) here.

t

The same result is obtained by summing the products shown.

multiply
multiply

multiply
multiply

(s2[t])

(s2[t])

T

Digital Sound Generation Beat Frei, 10-07-19, ICST 13/85

In the aforementioned calculation, Eq. 1 has been applied to the spectral product of the

original sampled data and the tabulated bandlimited impulse. Fig. 13 justifies this approach

provided that the number of table entries N per sampling interval is integer.

Fig. 13: Table-Induced Aliasing in the Sample Transposition Process

Time Domain Frequency Domain

f

Nfs fs 0

t

|Simp(f)| simp(t)

T/N

t

sorig(t)

Nfs fs 0

|Sorig(f)|

f

*

= =

See Fig. 9

t

Nfs fs 0

f

We calculated this (incl. higher

order components) using Eq. 1

Resampling at fres

T

k

sres[kTres]

Mfres fres 0

f

Digital Sound Generation Beat Frei, 10-07-19, ICST 14/85

One aspect not yet addressed is the high frequency attenuation of the bandlimited impulse

whose spectrum weights the original sampled data in the filtering process. Since that happens

before resampling, the transposition ratio has no influence. Applying a linear-phase FIR

prefilter to the sampled data when it is loaded into memory works well and avoids additional

runtime processing. An example design for sampling at 48 kHz combines the normalized

impulse of Fig. 8 with the prefilter below to get a mere ±0.05 dB gain deviation and 3.09 dB

overall gain. Refer to appendix B2 for Matlab code based on Parks-McClellan optimization.

∑
=

+=
16

0

][][
n

n nkxcky

c0 = c16 = 0.0028

c1 = c15 = -0.0119

c2 = c14 = 0.0322

c3 = c13 = -0.0709

c4 = c12 = 0.1375

c5 = c11 = -0.2544

c6 = c10 = 0.4384

c7 = c9 = -0.6334

c8 = 1.7224

(Prefilter)

 Fig. 14: Magnitude Response of the Combined Design “Fig. 8 and Prefilter”

We finish the section presenting the sliding window algorithm as a C snippet, which also

justifies the decision to restrict the number of table entries per interval to a power of two.

Useful modifications would be: 64-bit integers to support long samples, table interleaving in

order to read from consecutive memory locations to improve caching on PC architectures.

float blimp[10*2048]; // tabulated bandlimited impulse acc. to Fig. 8

float samples[length]; // prefiltered original audio sample

unsigned int ptr, ratio; // sample pointer * 2048, transpose ratio (2048 � 1:1)

unsigned int index, offset ;

//*** calculate interpolated output value and advance in time***

index = ptr >> 11; offset = 2047 + (index << 11) - ptr; // much faster than using ptr/2048 and ptr%2048

out = 0.0f;

for (i = 0; i++; i < 10) {

 out += blimp[offset]*samples[index];

 offset += 2048; index ++; }

ptr += ratio;

if (ptr > loopend) {ptr -= looplength;} // (optional loop control)

Digital Sound Generation Beat Frei, 10-07-19, ICST 15/85

1.5 Virtual Analog (VA) Oscillators

VA oscillators are intended to emulate the analog originals with focus on classic waveforms

and excellent modulation capabilities. The designs presented here generate high fidelity

signals in both frequency and time domain using an efficient algorithm that furthermore

supports easy integration of FM and hard synchronization.

We start with the bandlimited impulse train (BLIT) as described in [1]. The following designs

are significant improvements as they do not suffer from any of the commonly encountered

problems like frequency dependent gain, bias or phase shift.

The first signal to be synthesized is a simple sawtooth, which can be obtained by integrating

the sum of an impulse train and a constant (Fig. 15).

Fig. 15: Simple Sawtooth by Integrating an Ideal Impulse Train

Earlier insights from Fig. 3 suggest using bandlimited impulses to prevent aliasing when the

signal is translated to discrete time as it is the case in every digital oscillator (Fig. 16). If the

impulse has a flat spectrum over the audio band, no difference is perceived. An eventual high

frequency drop can be compensated by applying a filter to the output of the oscillator.

Fig. 16: Bandlimited Sawtooth by Integrating a Bandlimited Impulse Train

In a practical implementation, an open integrator would be very undesirable due to its

frequency response and numerical properties. A nice trick similar to the BLEP approach [5]

gets rid of it (Fig. 17):

Integrate the difference of a bandlimited and an ideal impulse train. This removes the constant

part and leads to a fixed length signal segment ready for tabulation. At runtime, read out the

segment and add a simple sawtooth.

t t

s2(t) s1(t)

Integrate
+

Integrate t

s3(t)

+
t

s4(t)

Digital Sound Generation Beat Frei, 10-07-19, ICST 16/85

Fig. 17: Bandlimited Sawtooth Generation without Integration

According to Fig. 17, the signal s6 is a train of fixed length segments separated by zero-valued

regions whose length depends on the fundamental frequency. An upper limit for the

fundamental is imposed by the length of the bandlimited impulse, being shortest in the design

of Fig. 6. In order to create the segment, we calculate the cumulative sum of s5. This simple

approximation to continuous time integration produces a negligible high frequency gain for

practical table sizes.

t

s5(t) = s3(t) – s1(t)

+
Integrate

=

t

=

t

s2(t)

_

t

s4(t)

s1(t)

+

t

s3(t)

+

_

t

Constant length segment! Calculated once from s5(t) and stored in a table.

s6(t) = s4(t) – s2(t)

0

Runtime Operations:

1. Compute s2(t) and s6(t) using the generic oscillator structure of Fig. 1

2. Compute the output s4(t) = s2(t) + s6(t)

Digital Sound Generation Beat Frei, 10-07-19, ICST 17/85

Now we are up to determine the appropriate table size for the segment. The output signal only

partially consists of tabulated values. That’s why Eq. 1 cannot be applied directly, but a

conservative guess can be made treating the whole signal as a table.

Since a sawtooth has a 1/f spectrum and aliasing is proportional to f, every harmonic

contributes to the same amount. The spacing of the harmonics is preserved when they are

aliased, thus only one component can fall more than octave below fo and we apply Eq.1 to it.

Components above fo remain inaudible because they are masked. In order to keep aliasing

below -85 dB and assuming a fundamental frequency fo = 4 kHz and a sample rate fs = 48 kHz

the number of table entries becomes N ≈ 2700 per sampling interval T. The entire segment

spans 4T, due to symmetry we just have to store N ≈ 5400 for one half.

The bandlimited sawtooth inherits the spectral droop from the bandlimited impulse. To

retrieve the brilliance of the analog original, we insert a postfilter, which should be as simple

as possible because it consumes processing time. A suitable IIR filter is found readily via cut

and try:

()
135.065.0

1
−+

=
z

zH pf

Figures 18 to 20 show the oscillator’s spectral purity and temporal fidelity. We happily notice

how little aliasing falls below the fundamental when the signal is discretized in time. Refer to

appendix B3 for the Matlab code used to create the segment.

Fig. 18: Bandlimited Sawtooth, fo = 1 kHz

(Cross: No postfilter. Dot: With postfilter. Line: Theoretical sawtooth spectral envelope.)

Digital Sound Generation Beat Frei, 10-07-19, ICST 18/85

Fig. 19: Bandlimited Sawtooth, fo = 4 kHz

Fig. 20: Bandlimited Sawtooth, fo = 12 kHz

Fig. 21: Segment Function

Digital Sound Generation Beat Frei, 10-07-19, ICST 19/85

The actual sawtooth oscillator is derived from the generic oscillator in Fig. 1. It employs a

constant 90° phase shift to centre the segment at the zero crossing. Fig. 22 and 23 depict the

block diagram and associated signals. Many synthesizers mix several oscillator signals

together. In this case, the postfilter is required only once. It’s a good idea to place it after a

ring modulator or a similar nonlinearity to lower their tendency to produce aliasing.

Fig. 22: Bandlimited Sawtooth Oscillator

Fig. 23: Signals in the Bandlimited Sawtooth Oscillator

Signal A completes a cycle within To ranging through 2N. As the half segment has a length of

2T, we obtain α = 4NT/To = fo·[4N/fs]. The index i to read the segment function from a table

containing M entries per half becomes i = MA/α = A·[1/fo]· [Mfs/(4N)]. The brackets show

which products are constant and which ones must be computed during runtime. We observe

that the fundamental frequency fo is required in its reciprocal form too. Since synthesizers

apply an exponential characteristic to frequency control and there’s no need to update at audio

rate (FM acts on the phase modulation input φ), the additional effort is not obstructive (see

appendix C2).

In case the hardware does not provide enough memory, the half segment can be approximated

by a polynomial (Fig. 24). The high order is typical for non-periodic bandlimited functions.

wrap

wrap

fn

φ y(x)

D

A

z
-1

 N

Hpf(z)

wrap

y(x) = -fseg[sym](A/α) ; |A| < α

 0 ; else

C

B

T0

k

B

A

C

D

N-ε

-N

α

Digital Sound Generation Beat Frei, 10-07-19, ICST 20/85

 ∑
=

=
7

0

seg[half] (x)f-
n

n

n xc

c0 = 0.99986

c1 = -2.97566

c2 = -0.23930

c3 = 7.83529

c4 = -3.25094

c5 = -11.51283

c6 = 13.50376

c7 = -4.36023

(Polynomial Approximation)

Fig. 24: Polynomial Approximation of the Half Segment

Although the same segment could be used to generate a bandlimited square wave, pulse width

modulation (PWM) is often desirable. If we sum the output of two sawtooth oscillators

running in opposite direction, we get a variable width pulse wave that inherits zero bias and

spectral purity (Fig. 25). The width is proportional to an offset φpw added to the phase

modulation input of one oscillator. A square wave is obtained for φpw = N/2 (90°).

Fig. 25: Variable Width Bandlimited Pulse Generation

A triangle wave is synthesized as the time integral of a square wave by combining the ideas of

Fig. 17 and Fig. 25. See Fig. 26 for details. The segment in s10 is calculated as the cumulative

sum of the sawtooth oscillator segment and then tabulated.

T0 Trel

k

Digital Sound Generation Beat Frei, 10-07-19, ICST 21/85

Fig. 26: Bandlimited Triangle Generation

As s8 is the time integral of s7, its amplitude is proportional to the fundamental period To.

On the other hand, a segment of s9 has constant size and amplitude which results in constant

amplitude and size of s10. To keep the amplitude of s12 independent of the fundamental

frequency fo, we use a constant amplitude signal s8 and scale s10 inversely proportional to To.

This is equivalent to weight it proportionally to fo. The constant β is found by matching the

slopes of s8 and s10 at an arbitrary fo and may be condensed into the tabulated values.

The weighted addition relaxes the accuracy requirements for the signal s10. Further

examination reveals that the table size can be reduced to N ≈ 1000 for the whole segment.

Unfortunately, we need two segments per full period and they overlap for To < 8T, hence a

wide range triangle oscillator contains two segment generators (Fig. 27) making it as resource

hungry as a pulse oscillator. Unlike most hardware synthesizers, which use dedicated constant

resources for an oscillator, software synthesizers running on a general purpose computer

consume processing cycles on demand. In this case, we should consider replacing the triangle

with a sinusoidal oscillator for f > fs/8 to save a segment generator.

s9(t)

t

+

=

t

s11(t) = s7(t) + s9(t)

t

Integrate

s10(t)

=
s12(t) = s8(t) + β·fo·s10(t)

t

+

Integrate

Integrate

Bandlimited Square Bandlimited Triangle

t

t

s7(t) s8(t)

To

4T

Digital Sound Generation Beat Frei, 10-07-19, ICST 22/85

Fig. 27: Wide Range Bandlimited Triangle Oscillator

Fig. 28: Signals in the Bandlimited Triangle Oscillator

Analogous to the sawtooth oscillator, we obtain α = fo·[4N/fs]. The index to read the segment

function from a table containing M entries per half becomes i = A·[1/fo]· [Mfs/(4N)].

wrap

wrap φ y(x)

F

A

z
-1

N

Hpf(z)

wrap

y(x) = ftri(x) ; |x| < α

 0 ; else

E B

2|x|

-N

y(x)

D

C

-

fn

fn

T0

k A

N-ε

-N

B

C

F

D

α

E

Digital Sound Generation Beat Frei, 10-07-19, ICST 23/85

1.6 Noise Generation

White noise for musical purposes can be synthesized efficiently by means of a linear

congruential generator [2]. Modulo division is performed automatically as a wrap-around if

the divisor matches the word size.

For 32 bit integer data types: x = (69069x + 1) mod 2
32

On 24 bit fixed point audio DSPs: x = (12268885x + 1) mod 2
24

Pink noise with its -10dB/decade slope and constant power per octave is obtained by filtering

white noise. A filter with 0.3 dB deviation from 0.00045fs to 0.45fs has been proposed by

Robert Bristow-Johnson:

() ()()()
()()()0.5356750.9479060.995728-z

 0.075684 0.833923-z 0.984436-z

−−

−
=

zz

z
zH

Fig. 29: Pink Noise Filter

This filter converts white noise uniformly distributed from -1 to 1 to non-uniformly

distributed pink noise with RMS amplitude 1. As this implies both an overall gain of 4.77 dB

and an increased crest factor, subsequent stages should be able to process peak values of at

least 3 without excessive distortion.

Digital Sound Generation Beat Frei, 10-07-19, ICST 24/85

1.7 Sinusoidal Oscillators

There are many ways to generate a sine wave, the most efficient being 2
nd

 order closed-loop

systems based on trigonometric identities or the z-transform of the discrete-time sinusoid

(section 2.1). Despite their low computational demand when running free, obstructive

calculations are mandatory for transient-less arbitrary modulation of both frequency and

phase. On the other hand, fast sinusoidal oscillators with immediate linear phase control are

readily realized with the generic oscillator structure of section 1.1.

If the hardware supports fast integer arithmetic and memory access, a lookup table is usually

the preferred choice to convert the simple sawtooth to a sinusoidal. About 500 table entries

are sufficient with linear interpolation, nearest neighbour lookup is even faster at the cost of a

larger table - about 30000 entries for a high-quality full cycle. Furthermore, we should be

aware of some advantages of integer arithmetic: Sums automatically wrap around on

overflow, and a simple shift operation converts the phase accumulator to the table index.

Polynomial approximations are a good alternative when multiplication is fast but memory

access expensive. Although it’s often suggested that reduction theorems should be used to

narrow the input range to π/2 or π/4, this is mainly an issue with truncated Taylor series. Since

conditional instructions take more time than an additional product term evaluation on modern

processors, we will stick to a polynomial that maps the whole circle and can be fed directly

with the output of a simple sawtooth oscillator. Minimax or Chebyshev techniques spread the

error evenly over the entire range outperforming Taylor series by several orders of magnitude

in both time and spectral domain. It’s important to note that the error consists of harmonics

rather than random noise: If we avoid discontinuities at the output when the input wraps from

1 to -1 or vice versa, higher harmonics will decline quickly with increasing order and even an

approximation with relatively large error may sound good as long as aliased harmonics

remain inaudible. This idea is exploited in the designs of Fig. 30 to 34.

Fig. 30: Map-Based Sinusoidal Oscillator

Fig. 31: Signals in the Map-Based Sinusoidal Oscillator

wrap

wrap φ sin(πx/N)
A

z
-1

B

fn

k A

N-ε

-N

B

Digital Sound Generation Beat Frei, 10-07-19, ICST 25/85

Fig. 32: sin(πx) ≈ -0.433645x
7
 + 2.428288x

5
 - 5.133625x

3
 + 3.138982x

The function in Fig. 32 works well as a general purpose sine shaper for musical applications.

All harmonics are masked and aliased components falling below a fundamental of 4 kHz are

90 dB down for a sampling rate fs = 48 kHz. Fig. 33 and 34 show the performance of the next

higher and lower order polynomial. For comparison, see the truncated Taylor series in Fig. 35.

Fig. 33: sin(πx) ≈ 1.63190x
5
 - 4.71594x

3
 + 3.08404x

Digital Sound Generation Beat Frei, 10-07-19, ICST 26/85

Fig. 34: sin(πx) ≈ 0.0636716x
9
- 0.5811243x

7
 + 2.5422065x

5
 - 5.1662729x

3
 + 3.1415191x

Fig. 35: Truncated Taylor Series, sin(πx) ≈ (πx)
9
/9! - (πx)

7
/7! + (πx)

5
/5! - (πx)

3
/3! + πx

Digital Sound Generation Beat Frei, 10-07-19, ICST 27/85

Approximations of the cosine within the range [-π, π] are:

εmax [%] K2 K3 K4 K5 K6 P(x) ≈ cos(πx)

6.3 -24 -39 -49 -53 -58 2.0124x
4
 - 4.0060x

2
 + 0.9339

3.0 -32 -43 -42 -45 -47 2.4236x
4
 - 4.3650x

2
 + 0.9693

0.25 -59 -54 -62 -69 -75 -0.8775x
6

+ 3.7472x
4
 - 4.8648x

2
 + 0.9975

0.004 -108 -94 -91 -96 -107
0.17824x

8
- 1.28739x

6
+ 4.04196x

4
 –

4.93273 x
2
 + 0.99996

Fig. 36: Performance of Selected Sawtooth to Cosine Shaper Polynomials

(Kn = A(nfo)/A(fo) in dB)

Sometimes, a triangle is available. In this case, one product term can be saved since the

approximation only needs to cover [-π/2, π/2].

Fig. 37: Mapped-Triangle Sinusoidal Oscillator

εmax [%] K3 K5 K7 K9 K11 P(x) ≈ sin(πx/2)

1.21 -38 -57 -70 -80 -91 1.5209x – 0.5090x
3

0.46 -49 -55 -57 -61 -64 1.5478x – 0.5520x
3

0.011 -91 -80 -91 -102 -117 1.57007x – 0.64089x
3

+ 0.070726x
5

0.007 -98 -84 -120 -98 -98 1.57031x – 0.64209x
3

+ 0.071844x
5

0.00006 -147 -132 -126 -135 -153
 1.5707908x - 0.6458911x

3
 + 0.0794309x

5
 -

0.0043311x
7

Fig. 38: Performance of Selected Triangle to Sine Shaper Polynomials

(Kn = A(nfo)/A(fo) in dB, K = 0 for n even)

The output is a cosine wave. Hence, we could attach a saw-to-sine shaper after the wrapper

(node A) to build a quadrature oscillator.

wrap

wrap φ P(x/N)

z
-1

N-2|x|

fn

A

Digital Sound Generation Beat Frei, 10-07-19, ICST 28/85

1.8 Ring Modulation

In the synthesis stage of musical instruments amplitude modulation at audio rates is usually

accomplished in a ring modulator, which does nothing but multiply two input signals to form

the output. Typical applications are the generation of disharmonic timbres, additional

harmonics, and tuned noise. A multiplication in the time domain corresponds to a convolution

of the spectra: If one input has a component at the frequency f1, the other one at f2, then the

output will contain components at |f1±f2|. New frequencies are created, so we have to take care

of aliasing and keep in mind that oscillator signals extend beyond the audio band (Fig. 18).

Fig. 39 shows some signals for typical conditions at fs = 48 kHz with two components.

Input 1: Sine f1 = 1.1 kHz, A = 0.9 + Sine fe1 = 23.1 kHz, A = 0.1

Input 2: Sine f2 = 5.5 kHz, A = 0.9 + Sine fe2 = 22.0 kHz, A = 0.1

Fig. 39: Signals in the Simple Ring Modulator

An analysis yields:

1. The desired components at f1±f2 = 4.4 and 6.6 kHz.

2. Components from a strong desired low frequency signal and an out-of-band signal

f1±fe2 = 23.1 and 20.9 kHz, f2±fe1 = 28.6 kHz (aliased to 19.4 kHz) and 16.5 kHz. Not

objectionable or masked in practical cases.

3. Components from two weak top- or out-of-band signals. fe1±fe2 = 45.1 kHz (aliased to

2.9 kHz) and 1.1 kHz. Audible. Aliased components are especially problematic

because they are neither masked nor do they fit into the harmonic context.

Digital Sound Generation Beat Frei, 10-07-19, ICST 29/85

Conclusion: Audible aliasing mostly arises from two input components around fs/2. It’s a

good idea to eliminate them in a filter with a zero at Nyquist before they get multiplied.

The collateral high frequency attenuation is equalized by a filter after the multiplication. We

should also insert a DC trap (s. Appendix C1) since multiplying signals with commensurate

frequency components leads to a (usually small) constant bias that may disturb subsequent

stages. (Fig. 40 and 41)

Fig. 40: Spectra of the Enhanced Ring Modulator (at points A, B, C)

Fig. 41: Enhanced Ring Modulator

Input scaling by 0.5 prevents overflow at nodes A and B. In floating point systems, we may

omit it and replace the factor 5/3 by 5/12.

z
-1

 0.5 x1

z
-1

 0.5 x2

5/3 z
-1

2/3

-

DC

trap
y A

B

C

Digital Sound Generation Beat Frei, 10-07-19, ICST 30/85

1.9 FM Synthesis

1.9.1 Principles

Frequency modulation (FM) is a popular sound synthesis method introduced in [13]. It

generates inherently bandlimited complex spectra with low computational effort. Most of

today’s musical synthesizers feature some sort of FM, often modulating the phase instead of

the frequency. Phase modulation (PM) is actually used in classic FM synthesizers; thus we

stick to the term “FM synthesis” but name the modulation type correctly. We start by

examining the general behaviour of a basic setup (Fig. 42).

Fig. 42: Basic Phase Modulation Setup (as used in FM synthesis)

Key formulae governing the system of Fig. 42 are:

()() =+++= cmmc tfmtfAtx ϕϕππ 2sin2sin)(() ()()∑
∞

−∞=

+++
n

cmmcn ntnffmJA ϕϕπ2sin

Discussion:

1. Frequency components appear at |fc ± nfm| with n integer. For a harmonic output

spectrum, the modulator frequency fm must be an integer multiple or submultiple of

the carrier frequency fc.

2. The magnitude of spectral components is determined by n-th order Bessel functions of

the modulation index m: A larger m results in a richer harmonic content. For n > m,

the harmonics will diminish rapidly effectively limiting the output spectrum (Fig. 43).

With the Stirling formula for the factorial it can be shown that this function decreases

slightly faster than exponentially with increasing n.

3. Frequency components can appear twice with different magnitude and opposite phase

causing characteristic holes in the spectrum. Signals with very high m tend to sound

annoying due to the characteristic peak around mfm; values above 10 are rarely used.

Furthermore, the harmonics do not evolve naturally when m is swept in order to create

a dynamic spectrum. In this case it’s advisable to confine m to about 1.5 and use a

more complex modulator or feedback.

4. If φc = φm = 0, the output will be unbiased. This also holds for φm ≠ 0 if φm is the

output of an additional modulator with φc = 0 and φm is either zero or satisfying the

condition in this sentence. If φc = 0 for all oscillators in a setup, the output is unbiased.

As this is often hard to fulfil in a variable synthesis chain, the frequency control input

is rarely used for modulation to avoid detuning. A bias at the phase input only changes

the spectrum and often goes unnoticed at all.

fm

φm

m

fc
x(t)

Modulator Carrier Oscillator

φc

φ

Digital Sound Generation Beat Frei, 10-07-19, ICST 31/85

Fig. 43: Magnitude of Bessel Functions of the First Kind

There’s an asymptotic estimate valid for 0 < m < 1+n :

n

n

m

n
mJ 








≈

2!

1
)(

Fig. 44: Basic Setup Spectra (fm = fc = 2 kHz, φm = φc = 0)

Digital Sound Generation Beat Frei, 10-07-19, ICST 32/85

Fig. 44 shows FM spectra for different values of m. Here we see the remarkably steep roll-off

that substantially simplifies bandwidth control. A provision for adjusting the modulation

index m according to the fundamental frequency suffices to keep an FM system alias-free.

The frequency fmax at which the components are down by at least 80 dB relative to the main

peak is bounded by:

() mc fmff 3.12max ++< ; m > 0.03

() mc f
m

ff
5.0ln

3.9
max −< ; 0.0002 < m < 0.03

A severe disadvantage of the basic setup is the lack of highs. Three methods are commonly

employed as a remedy:

• Choosing fm >> fc

• Feedback

• Modulating the modulator

Fig. 45 depicts the result of the first approach with its characteristic large holes in the

spectrum. This technique is often applied to create metallic timbres and short transients.

Fig. 45: Basic Setup Spectra (fm = 7 kHz, fc =1 kHz, φm = φc = 0)

Digital Sound Generation Beat Frei, 10-07-19, ICST 33/85

1.9.2 Feedback

The spectral characteristics and control dynamics of the feedback method resemble those of

subtractive synthesis. Hence, feedback pleasantly extends the sonic range of FM synthesis

towards analog timbres.

So far, we assumed the system to be time continuous. If we use the phase input as we did, the

modulation paths are memoryless and the discrete time realization exactly equals the sampled

continuous system. Therefore, we just have to take care for the continuous prototype not to

contain spectral components that will cause audible fold-over. A discrete time feedback

system however must have some memory in its loop and neglecting it will not provide a

viable approximation beyond fs/10. That’s why it’s advisable to directly analyze a discrete

time version (Fig. 46) that employs a sinusoidal oscillator from section 1.7 (e.g. Fig. 30). For

further analysis, the phase input φ is normalized to 2π and the output amplitude to 1.

Fig. 46: Discrete Time Oscillator with PM Feedback

 Fig. 47: PM Feedback Spectra

fc
x(t) φ

β

z
-1

Digital Sound Generation Beat Frei, 10-07-19, ICST 34/85

Typical spectra are shown in Fig. 47. The harmonics grow smoothly without leaving holes

when β is increased. Unfortunately, the richness of a sawtooth cannot be achieved as the

system becomes unstable for β > 1. We also notice the fold-over for larger values of β. The

spectral envelope for different values of β in Fig. 48 may assist in determining whether

aliasing would become problematic with the intended amount of feedback.

Fig. 48: PM Feedback Normalized Spectral Envelopes for different values of β

The amplitudes in Fig. 48 are approximately (n > 1): () ()() 1325.048.13.0
−− −+≈

nn

n eA βββ

A side effect of PM feedback is a frequency dependent output bias, roughly given for

fo/fs < 0.1 and practical β by:

()
s

bias
f

f
x 0369.212.3 ββ +−≈

Consequently, a DC trap (s. Appendix C1) is recommended at the summation point of the

carrier oscillators if feedback is employed.

In classical FM synthesizers, the instability at β >> 1 is exploited to create noise. It sounds

nearly white except for some extra peaks related to the fundamental, which may be desired or

not.

Examination of the instability reveals that it starts with a high frequency parasitic oscillation

peaking at fs/2. So why not reject those components in the feedback loop to extend the useful

range of β and get a more brilliant sound? Not surprisingly we recycle the technique already

known from the ring modulator. The resulting structure dates back to the early days of FM

although it has rarely been mentioned in the literature. Recently, a variation based on an IIR

low-pass filter has been proposed by Peter Schoffhauzer. (Fig. 49)

Digital Sound Generation Beat Frei, 10-07-19, ICST 35/85

Fig. 49: Enhanced PM Feedback (Left: Traditional, Right: Schoffhauzer)

Fig. 50: Comparison of PM Feedback Spectra (f0 = 450 Hz)

Enhanced feedback results in a distinctly richer spectrum, but the traditional method

introduces a peak around fs/3 that becomes more pronounced with increasing β. While it’s an

amazing improvement over simple feedback in any FM system, we should refrain from

emulating an analog sawtooth using this structure, lest we end up with an annoying peak that

shines through in every sound. The Schoffhauzer method performs much better in this regard

and a good VA sawtooth spectrum is obtained with a few additional tweaks. Refer to his

paper for details [16]. Note the moved output tap in Fig. 49.

fc
x(t)

β

z
-1

 z
-1

0.5

fc

β

z
-1

x(t)

φ φ

Digital Sound Generation Beat Frei, 10-07-19, ICST 36/85

1.9.3 Complex Modulators

Modulators with complex spectra are very rewarding and ubiquitous in FM synthesis.

Complex spectra are obtained by modulating a modulator or using non-sinusoidal oscillators.

The static spectrum of such a modulator should sound rather dull to avoid aliasing as the

following calculations demonstrate. We consider a modulator signal that consists of a strong

low frequency (Am1) and a weak high frequency (Am2) component. Furthermore, we introduce

angular frequencies (ω = 2πf) for compact notation:

())sin()sin(2211 tAtAtx mmmmm ωω +=

The modulated carrier output becomes:

() []())sin()sin(sin 2211 tAtAmttx mmmmc ωωω ++=

() () () () ())sin(sin)sin(cos)sin(cos)sin(sin 22112211 tmAtmAttmAtmAttx mmmmcmmmmc ωωωωωω +++=

With mAm2 << 1 and 2
nd

 order Taylor approximations for sine and cosine:

() () ())sin()sin(cos)(sin
2

1)sin(sin 22112

2

2

2

2

11 tmAtmAtt
Am

tmAttx mmmmcm

m

mmc ωωωωωω ++











−+≈

() () () ())sin()sin(cos)2cos(1
4

1)sin(sin 22112

2

2

2

11 tmAtmAtt
Am

tmAttx mmmmcm

m

mmc ωωωωωω ++











−−+≈

() ()

()() ()()[]

()() ()()[])sin(sin)sin(sin
2

)sin(2sin)sin(2sin
8

)sin(sin
4

1

112112

2

112112

2

2

2

11

2

2

2

tmAttmAt
mA

tmAttmAt
Am

tmAt
Am

tx

mmmcmmmc

m

mmmcmmmc

m

mmc

m

ωωωωωω

ωωωωωω

ωω

+−−++

++−+++

++











−≈

Discussion:

1. The main component is the carrier modulated by the strong signal.

2. There are two weak copies of the main component, spectrally shifted by the weak

signal’s frequency. If both main and weak components extend beyond the audio range,

audible aliasing becomes likely. This problem is encountered for example when FM is

applied to VA oscillators.

3. Even weaker spectral copies of the main component occur shifted by multiples of the

weak signal’s frequency (here we calculated only 2
nd

 order components). Despite their

low amplitude, they are often more troublesome than those mentioned in (2), because

aliasing may also crop up with a low frequency sinusoidal carrier. This is the main

reason why dull modulators are preferable.

4. The output is unbiased if all oscillators are in phase and unbiased.

See Fig. 51 for an example.

Digital Sound Generation Beat Frei, 10-07-19, ICST 37/85

Fig. 51: PM Spectrum, Modulator: Sum of Sines (1 kHz, m = 1) + (20 kHz, m = 0.1)

To illustrate the combination of the foregoing methods, we aim at replacing a FM feedback

pair for a VA sawtooth oscillator (Fig. 52). Let’s see what we get in a straightforward

approach: A clean spectrum with an interesting grumpy character caused by the shape

becoming exponential at low frequencies similar to some analog counterparts (Fig. 53). We

may easily add extensions to morph from a sawtooth to a sinusoid and for phase modulation.

The downside: It sounds less brilliant for very low fundamentals (enhanced feedback will

improve). Due to feedback, the system lacks immediate phase control; frequency control is

somewhat cumbersome too. The simplistic phase compensation is imperfect and leaves the

output slightly biased; we may use a look-up table or omit it in favour of a DC trap. All in all,

this oscillator is only recommended if there is already a given classic FM infrastructure.

Fig. 52: PM Bandlimited Sawtooth Oscillator

wrap wrap sin(πx) z
-1

wrap sin(πx)

z
-1

z
-1

β = max(1-9f/fs,0)

m = max(1.4-6f/fs,0)

comp = 2.4*sqrt(f/fs)

β

β

m

comp

fn

Digital Sound Generation Beat Frei, 10-07-19, ICST 38/85

Fig. 53: Spectrum and Shape of the PM Bandlimited Sawtooth Oscillator (fo = 650 Hz)

In a second example, we focus on the triangle which is likely to be modelled more accurately

due to its sparse spectrum. Such a replacement would be very beneficial since the VA triangle

oscillator is computationally intensive. In addition, we come across the idea of inserting a

polynomial into the feedback path. An even order type is chosen as the triangle spectrum

contains only odd harmonics.

Fig. 54: PM Bandlimited Triangle Oscillator

Fig. 55: Spectrum and Shape of the PM Bandlimited Triangle Oscillator (fo = 400 Hz)

wrap z
-1

wrap sin(πx)

z
-1

c1 = (0.75- c2)·min(max(1.44-11.5f/fs,0),1)

c2 = max(0.5-12f/fs,0) (can be set to zero with minor sonic change)

c1(f)x
2
 + c2(f)x

4

f

fn

Digital Sound Generation Beat Frei, 10-07-19, ICST 39/85

In the triangle oscillator, spectral accuracy is not limited by the maximum amount of

feedback. Instead, excessive feedback will evoke an unnatural boost of the lower harmonics.

To summarize the reasonable effort FM approach to classic analog waveforms, one can state

that a clean and well-controlled spectrum is obtained. The lack of immediate phase control as

well as weak highs at very low fundamentals may be obstructive in some cases.

We finish the section tackling the challenge of adding FM to VA oscillators. Already known

is that a modulator should have as little high frequency content as possible to avoid aliasing.

Does this also apply to the carrier? To analyze it, we assume without loss of generality an

unbiased carrier decomposed into a sine-based Fourier series:

() ∑
∞

=

+=
1

)sin(
n

ncnc tnbtx ϕω

A phase shift ∆φ at the modulation input just shifts the time pointer of the waveform cycle by

∆t = T∆φ/(2π) = ∆φ/ωc. Hence, the modulated carrier becomes:

() ∑∑
∞

=

∞

=

∆++=+






 ∆
+=

11

(mod))sin()sin(
n

ncn

n

n

c

cnc ntnbtnbtx ϕϕωϕ
ω

ϕ
ω

Assuming further a modulator ∆φ = m·sin(ωmt) we obtain:

() () () []()nmc

k

k

n

n

n

mncnc tknnmJbtnmtnbtx ϕωωωϕω ++=++= ∑∑∑
∞

−∞=

∞

=

∞

=

sin)sinsin(
11

(mod)

The Bessel function Jk(nm) starts to diminish for k > nm. Given nmax as the order of the

highest significant carrier harmonic, phase modulation causes a bandwidth increase roughly

proportional to nmaxmfm. To get rid of the frequency dependence, which may easily cause

aliasing, we make the effective m inversely proportional to fm by weighting the modulator

spectrum. The simplest way would be to integrate the modulating signal. This is feasible at no

cost using the frequency instead of the phase control input at the carrier oscillator, because

phase is the time integral of frequency. However, any bias in the modulator would detune the

carrier oscillator and the modulation depth becomes excessively large for low fundamentals.

In some systems, the modulator is unbiased by design and true frequency modulation may be

adequate. Otherwise, the setup in Fig. 56 is recommended: The phase input is fed by a leaky

integrator with an additional zero at fs/2. Exact values are application specific.

Fig. 56: Wideband Oscillator PM Setup

Phases often can be matched only for a single spectral component which results in a biased

output. The bias is usually lowest when the fundamentals are in phase, implying a 90 degree

shift between the oscillators for an integrated modulator signal. Since VA oscillators are

expected to be biased anyway due to other processes like hard synchronization, it is good

practice to insert a DC trap between the carrier oscillator output and subsequent stages.

fm

φm

0.05m

fc
xc(t)

Wideband Modulator Wideband Carrier Oscillator

φc
z

-1

0.95

Digital Sound Generation Beat Frei, 10-07-19, ICST 40/85

Even if an oscillator lacks immediate phase control, it’s still possible to add FM capabilities.

As phase is the time integral of frequency, we may differentiate the modulator signal and add

it to the frequency input (Fig. 57).

We should be aware that the discrete time difference is an approximation to the continuous

time derivative. Similarly, the cumulative sum of the frequency input, which represents the

phase in an accumulator-based oscillator, is not equal to the continuous time integral.

Fortunately, these deviations exactly cancel.

Fig. 57: FM Extension for Oscillators without Phase Input

fnc

Wideband Carrier Oscillator

z
-1

fn

-
φ

Narrowband Modulator

z
-1

0.95

fnc

Wideband Carrier

Oscillator

fn φ

Wideband

Modulator

z
-1

0.05

-

Digital Sound Generation Beat Frei, 10-07-19, ICST 41/85

1.10 Wavetable Oscillator

The wavetable oscillator is a standard block to generate arbitrary static harmonic spectra.

Dynamic ones can be realized by crossfading the output of two units. It works like a sample-

based oscillator that repeats a fixed length segment ad infinitum. Only low computational

resources are required because we may design it to sound good with linear interpolation.

Fig. 58: Wavetable Oscillator Working Principle (N = 16)

The tabulated values x[n] and the output spectrum X[k] are directly related by the Discrete

Fourier Transform (DFT):

[] Njkn
enxkX

N

n

/2
][

1

0

π−
=∑

−

=

 [] Njkn
ekX

N
nx

N

k

/2
][

1 1

0

π∑
−

=

=

When constructing a wavetable from the spectrum, a real valued signal must be ensured by

satisfying the condition X[k] = X
*
[N-k] for every k. We can deliberately set the spectral

components from k = 0 to N/2, whereby X[0] and X[N/2] should always be zero. The

fundamental fo of the output signal is given by the sample rate fs, the table size N, and the

fraction α of a table increment at which the output pointer proceeds. X[k] maps to the non-

aliased part of the output spectrum S(f) as follows:

S(αfsk/N) = X[k] for 0 ≤ k < N/2 and k integer, 0 otherwise.

The special case α = 1 leads to the natural fundamental fo(nat) = fs/N and harmonics at kfo(nat).

Thus, α can also be interpreted as a transposition factor relative to fo(nat). If fo falls below fo(nat),

the sound starts missing highs, that’s why the table should not be too short; a popular choice

is N = 512.

Sometimes, the above formulae have to be evaluated quickly in large quantities. In this case,

the Fast Fourier Transform (FFT) comes in handy and there are tricks that explore symmetry

to speed up things further. These involve packing two real signals into a complex one, or two

spectra into lower and upper halves. The reader may refer to DSP books for details.

Example sources for wavetables are:

• Editors

• Automatic extraction from samples. A purely time domain based approach is as

possible [3] as spectral analysis and reordering [4].

• States of a slow system that is manipulated in real-time (→ Scanned Synthesis).

• Neural networks, cellular automata, whatever comes to our mind.

As long as the source delivers a natural spectrum with most power concentrated at lower

harmonics, aliasing is normally not an issue. One word on the phase relations of harmonics:

pointer wrap around

output pointer

output value

Digital Sound Generation Beat Frei, 10-07-19, ICST 42/85

Although often disregarded, they are important. Wavetables acquire a metallic-diffuse

coloration which is audible up to a fundamental of several 100 Hz if the phases are spread

randomly. We mentioned that linear interpolation is adequate to read out the table. How is

that possible with a technique that performs rather poorly in sample-based oscillators? Let’s

start by showing the equivalence of linear interpolation to the convolution of the tabulated

signal with a triangular window followed by resampling at the read location (Fig. 59).

Fig. 59: Equivalence of Linear Interpolation and Convolution with a Triangular Window

This situation is exactly the same as with the sample-based oscillator except that the filter

function is a triangular window instead of a bandlimited impulse (Fig. 60). It is of great

advantage that we don’t need to tabulate this window since the interpolated value can be

calculated quickly without significant error. On the other side, the filter is far from perfect

at higher frequencies. The amount of aliasing is derived with help of Fig. 60 and the fact that

convolution with a triangular window in the time domain corresponds to multiplying the

spectrum with the Fourier Transform Sw of the triangular window: () () 2
sin







=

v

v
vSw

π

π
.

Any spectral component k within the range [0, N/2] of an N-size wavetable produces two first

order aliased components with relative amplitudes given by:

|(k/N)S|

 |k)/N)((NS|

w

w ±
=γ , approximated for k << N by

2







≈

N

k
γ .

In practical applications, the number of harmonics rarely exceeds kmax = 250, which paves a

way to pin down aliasing below any desired level by increasing the table size to N >> 2kmax.

This is just oversampling the tabulated signal.

We know from the section on sample-based oscillators that the transposition factor should be

limited to α ≈ [0.75, 2] for a system with fs = 48 kHz and a spectrum up to 20 kHz to avoid a

dull sound or aliasing. As a wavetable oscillator obeys the same rules, it would only be able to

generate fundamentals in the vicinity of fo(nat) covering a range of about an octave. To

alleviate that, different tables are selected depending on the desired fundamental.

In a first attempt, we could create a new table by halving its size and keeping the lower half of

the spectrum. It will then have twice the natural fundamental and cover the octave above.

Unfortunately, aliasing increases because typical spectra have the energy concentrated at low

k. Additionally, a higher fo(nat) reduces auditory masking of aliased components below the

fundamental and last but not least, the ear becomes more sensitive with increasing frequency.

x[n+λ] = (1- λ)x[n] + λx[n+1]

x[n+λ]

= x[n] + λ(x[n+1] – x[n])

= (1- λ)x[n] + λx[n+1]

λ

n+1 n

λmax = 1

Digital Sound Generation Beat Frei, 10-07-19, ICST 43/85

Fig. 60: Signals in the Wavetable Oscillator

In an attempt to improve, we keep the table size constant and zero the upper half of the

preceding half-spectrum. This allows for doubling the transposition factor. It turns out that

this oversampling scheme together with linear interpolation fits human perception very well.

A wavetable oscillator that employs this principle is depicted in Fig. 61. To split the phase

pointer into the integer table index and the fractional offset for interpolation (λ in Fig. 59), the

same scheme as with the sample-based oscillator can be applied if the table size N is a power

of two (see code at the end of section 1.4).

Time Domain Spectral Domain

|Xwt[k]|

k

N -N 0

|Xip[k]|

k

nαT

N -N 0

f

|Srs(f)|

-fs/α 0 fs/α

|Sout(f)|

f

-fs 0 fs

nT

|Sw(k/N)|

Digital Sound Generation Beat Frei, 10-07-19, ICST 44/85

Fig. 61: Wavetable Oscillator

Low rate pitch modulation should not affect table selection to avoid periodic switching noise

when the fundamental happens to be near a boundary. As this does not apply to the phase

input, full FM capability at audio rates is preserved. In case of portamento, switching is

unavoidable but not perceived normally. A single table may also cover less than an octave and

the range of α needs not to be centred around fo(nat).

Design Example: N = 512, fs = 48 kHz, faudio = 20 kHz, αmin = 0.9, αmax = 1.3

→ fo(nat) = fs/N = 93.75 Hz, ρ = αmax/ αmin = 1.444, X[k] = 0 for N-kmax > k > kmax

Table Index i kmax Frequency Range

0 213 (= kmax(0) = Nfaudio/fs) 20 to 122 (= ro = αmaxfo(nat))

1 147 (= kmax(0)/ρ) 122 to 176 (= ρro)

2 102 (= kmax(0)/ρ
2
) 176 to 254 (= ρ

2
ro)

3 71 254 to 367

4 49 367 to 531

5 34 531 to 766

6 23 766 to 1107

7 16 1107 to 1599

8 11 1599 to 2309

9 8 2309 to 3336

10 5 3336 to 4818

11 4 4818 to 6960

12 2 6960 to 10053

13 1 10053 to 20000

In synthesizers, the fundamental frequency fo is obtained by exponentiation of the actual

control variable. If this variable is used directly, no case differentiations are required as the

table index can be calculated directly: 


















 −−
=

ρ

α

log

logloglog
,0max

)(min natoo ff
floori .

wrap

wrap φ

z
-1

control
pitch + portamento,

no modulations

fn

Digital Sound Generation Beat Frei, 10-07-19, ICST 45/85

We finish this section with examples of aliasing analysis for a tabulated sawtooth.

Case 1: fo = 500 Hz → kmax = 49

Signal power normalized to the fundamental: ∑
=

≈





=

49

1

22

6

1

n

s
n

P
π

Aliased power normalized to the fundamental: 6

4

49

1

2
2

1018.1
808501

2 −

=

⋅≈=



















≈ ∑

NN

n

n
P

n

n

SNR in dB = 10log(Ps/Pn) ≈ 58 dB

No need to worry though; most aliasing occurs above the fundamental and is masked by the

harmonics. If we assume a uniform noise power spectrum and take only components below

half the fundamental frequency into account, we obtain a better estimate for the effectively

perceived SNR:

10log(Ps/(Pnfcrit/(0.5fs))) = 10log(Ps/(Pn·250/24000)) = 81 dB.

The aliased spectrum is not continuous however, that’s why we also have to examine the

worst case, which occurs when the highest harmonic is aliased to a frequency below fo/2:

8

4

2

)49(1049.3
49 −⋅≈=
N

Pn

SNR = 10log(Ps/Pn(49)) ≈ 77 dB

Case 2: fo = 4000 Hz → kmax = 5

∑
=

≈





=

5

1

2

46.1
1

n

s
n

P 9

4

5

1

2
2

106.1
1101

2 −

=

⋅≈=



















≈ ∑

NN

n

n
P

n

n

SNR ≈ 89 dB

Conclusion:

The wavetable oscillator in Fig. 61 shows better spectral performance at higher fundamentals.

This unusual behaviour is attributed to the combination of oversampling proportional to the

fundamental frequency and constant output bandwidth. As long as the power is concentrated

at low harmonics, everything is fine, but noise may become an issue with tabulated band pass

spectra. In this case, enlarging the table will solve the problem at the expense of increased

memory requirements. The popular choice of N = 512 is scarcely sufficient, however, for

state-of-the-art quality, especially when replacing VA oscillators, N = 1024 is recommended.

Some remarks on the output spectrum:

Linear interpolation has a Sinc
2
 frequency response. When tables are constructed from

spectra, we have to emphasize the k-th spectral component by

[]
()

2

/sin

/








=

Nk

Nk
kS pre

π

π
 in order to preserve the highs.

The same applies to a signal that is extracted in the time domain. Prefiltering it with

()
125.075.0

1
−+

=
z

zH pre before the table segments are gathered is a practical solution.

Digital Sound Generation Beat Frei, 10-07-19, ICST 46/85

1.11 Hard Synchronization

Hard synchronization (a.k.a. Sync) of two oscillators descends from classic analog

synthesizers. Whenever the master oscillator completes a cycle, the slave oscillator is reset to

the beginning of its waveform (Fig. 62). While the sound of synced pulses is characteristic,

not to say a cliche, the combination of Sync and FM is one of the most fruitful ad-hoc

synthesis techniques. In the time domain, a synced signal can be described by multiplying the

slave oscillator signal with a shifted rectangular window and repeating the resulting segment

at the master’s rate (Fig. 63). In the frequency domain, this corresponds to the convolution of

the slave oscillator spectrum with the shifted window spectrum (whose magnitude is a Sinc

function in this case) followed by resampling the continuous spectrum at the master oscillator

frequency.

Fig. 62: Hard Sync Oscillator Signals

Fig. 63: Hard Sync Signals and Spectra

Reset Reset
Master

Slave

Tslv

Tmst

Time Domain Spectral Domain

t f

0

fslv 3fslv

fmst 2fmst

Tmst

Tslv

Digital Sound Generation Beat Frei, 10-07-19, ICST 47/85

Assuming an unsynchronized slave oscillator signal s(t) with the complex spectrum

() ()∑
∞

−∞=

−=
k

slvkorig kffcfS δ , the output spectrum of the synchronized signal becomes:

() ()
()()

()∑ ∑
∞

−∞=

∞

−∞=








 −−

−

−
−=

n k slvmst

slvmst

kmstsync

slvkffmstTj
e

kffT

kffT
cnfffS

π

π

π
δ

sin

Discussion:

1. The synced signal spectrum has only components at integer multiples of the master

oscillator frequency and f = 0.

2. Their magnitude is determined by a sum of phase shifted components derived from the

unsynchronized signal. These components are copies of the rectangular window

spectrum centred at the frequency of spectral peaks in the unsynchronized signal and

weighted by their magnitude.

3. The bandwidth of the output signal is the bandwidth of the original signal plus the

bandwidth of the window spectrum.

As the Sinc function has infinite support and diminishes slowly, aliasing will occur in a

discrete time realization. We solve this problem by changing the window from a rectangle to a

function with steeper roll-off and low side lobes. On a 96 kHz system, the rectangle can be

convolved with a bandlimited impulse, which results in a function that preserves the original

characteristics of Sync as much as possible without being susceptible to aliasing (Fig. 64).

This is equivalent to replacing the edges by a BLEP [5].

Fig. 64: Bandlimited Rectangle Window for Hard Sync on 96 kHz Systems

Besides band limiting, there’s a second challenge: We have to detect the zero crossings of the

master oscillator and since they usually do not coincide with a sample point, we also need to

set the new phase of the slave depending on the master’s phase to φslv = φmst·fslv/fmst.

That’s the reason why immediate phase control is vital to slave oscillators. A realization of a

synced oscillator pair is shown in Fig. 65. We may feed the waveform output of the master

into the phase input of the slave using a wideband FM circuit to get the exciting combination

of FM and Sync. In the slave oscillator, it’s important to place any building blocks with

memory or feedback after the multiplication with the windowed signal if we don’t reset their

states. Sync produces bias: A DC trap should be added to the output signal chain.

*

=
4T 4T

To

4T

0

1

fsgm(t/(4T))

Digital Sound Generation Beat Frei, 10-07-19, ICST 48/85

Fig. 65: Hard Sync Oscillator Pair

Fig. 66: Signals in the Synced Slave Oscillator

wrap fn(mst) z
-1

|x|

Master Oscillator

z
-1

if φmst[k] > 0 and φmst[k-1] < 0 then

set φslv[k] to φmst[k]·fslv/fmst

wrap wrap fn(slv)

φ

y(x) z
-1

w(x)

Slave Oscillator

α = fs/(8fmst)

w(x) = fsgm(x) ; |x| < 1

 1 ; otherwise

A

1/fmst

B

C D

φmst[k] φmst[k-1]

φslv[k]

A

B

C

D k

Tmst

Tslv

Digital Sound Generation Beat Frei, 10-07-19, ICST 49/85

At point A, a triangle in the interval [0, 1] at the master’s fundamental frequency is present. If

we want to tweak the system to make it work satisfactorily at fs = 48 kHz, the factor α is

crucial as it determines the slope at which the window function is evaluated.

Typical modifications are:

• Scaling: A lower value reduces the slope and proportionally the bandwidth of the

window. This results in less aliasing, but the sound becomes peaky for large slave to

master frequency ratios.

• Setting a lower limit of 1 to ensure that the window function completes a whole cycle

even at the maximum master frequency.

Another field of experimentation is the window w(x) with focus on polynomial segments

whose spectrum rolls off quickly when used as an edge replacement. The simplest function is

a linear ramp, which results in a triangle window. It can be shown (by iterated differentiation

and remembering that the Dirac delta has a flat spectrum) that if the n-th lowest order

derivatives are zero at the borders, the spectrum asymptotically declines at 1/f
n+2

. The lowest

order polynomial with zero first derivatives that satisfies all side conditions is 3x
2

– 2x
3
.

The following design example is suggested for fs = 48 kHz:



















=

mst

s

f

f

24
,1max,8minα ()



 <−

=
otherwise

xxx
xw

;1

1;23 32

All spectra are taken with a sinusoidal slave oscillator. For a more complex signal, its spectral

components could be analyzed separately and summed up. When we consider the spectral

envelope of typical oscillator signals, an aliased component below fmst/2 can be expected to be

down by around 80 dB relative to the desired signal. While this situation is satisfactory, it

worsens significantly for master frequencies at the top of the audio range. In this case, it’s

preferable to fold down fmst by an octave when it would exceed 6 kHz.

Fig. 67: Hard Sync Oscillator Spectrum, fmst = 1050 Hz, fslv = 3700 Hz

Digital Sound Generation Beat Frei, 10-07-19, ICST 50/85

Fig. 68: Hard Sync Oscillator Spectrum, fmst = 3910 Hz, fslv = 7400 Hz

Fig. 69: Hard Sync Oscillator Spectrum, fmst = 3910 Hz, fslv = 19300 Hz

Fig. 70: Hard Sync Oscillator Spectrum, w(x) =Raised Cosine Window,

fmst = 3910 Hz, fslv = 7400 Hz

Digital Sound Generation Beat Frei, 10-07-19, ICST 51/85

Some existing designs employ a raised cosine window that also has zero first and non-zero

second derivatives at the borders:

()
()







<
−

=
otherwise

x
x

xw

;1

1;
2

cos1 π

While being computationally more expensive, its spectral characteristics surpass the

polynomial solution only marginally (Fig. 70).

Summary:

Although Sync is feasible in a 48 kHz system, this is one of the cases where a double rate

system has audible advantages. There’s a trade off between aliasing and sonic authenticity for

high slave to master frequency ratios. The analog original retains a pleasant broadband

formant characteristic while the digital version starts to sound like a single resonant peak due

to the narrow bandwidth of the window (which is essential to limit aliasing).

Digital Sound Generation Beat Frei, 10-07-19, ICST 52/85

2 Alternative and Specialized Oscillators

2.1 Sinusoidal Oscillators based on Second Order Systems

This class of sinusoidal oscillators is the most efficient for fixed parameters. On the other

hand, phase control involves the calculation of trigonometric functions to high precision

rendering audio rate modulation laborious. Even maintaining a smooth signal and constant

amplitude when the frequency is changed is not trivial.

2.1.1 Coupled Form Oscillator

An archetype of the aforementioned oscillator class is obtained by encoding the elements of

a rotating vector into the state variables of a second order system (Fig. 71). The resulting

oscillator has two outputs whose phases differ by 90°, hence sine and cosine functions are

generated simultaneously. The phase increment φ is proportional to the frequency:

φ = 2πfo/fs. This relation is used throughout the entire section.

Fig. 71: Coupled Form Sinusoidal Oscillator

[] []nn xx 






 −
=+

ϕϕ

ϕϕ

cossin

sincos
1 ; State Space Equation of the Coupled Form Oscillator

Suggested initial conditions: x = (1, 0).

The structure is insensitive to both coefficient and state quantization. It exhibits neither

glitches nor permanent changes of the amplitude when φ is modulated. In a practical

realization, the amplitude drifts with time due to roundoff errors. As a workaround, we may

scale the coefficients by a factor slightly above 1 and use saturation arithmetic. Another

method is to approximately normalize the state vector from time to time as follows:

2/)3(
2

x−=α xx →α

x1

x2

(x1[n], x2[n])

(x1[n+1], x2[n+1])

φ

z
-1

cosφ

z
-1

sinφ

-

x1

x2

Digital Sound Generation Beat Frei, 10-07-19, ICST 53/85

2.1.2 Direct Form Oscillator

Another oscillator type is found by plugging x[n] = sin(nφ + φo) into the trigonometric

identity sin(a+b) + sin(a-b) = 2sinacosb. We get: x[n+1] + x[n-1] = 2x[n]cosφ.

A direct form one topology is used to implement the equation (Fig. 72).

Fig. 72: Direct Form Sinusoidal Oscillator

[] []nn xx 






 −
=+

01

1cos2
1

ϕ
 ; State Space Equation of the Direct Form Oscillator

Suggested initial conditions, must be set whenever φ changes: x = (1, cos φ) or (sin φ, 0).

This is the efficiency champion among sinusoidal oscillators. However, its application range

is limited because the amplitude exhibits a discontinuity and undergoes a permanent change

when φ is set to a new value without an accompanying state update. Furthermore, the use of

single precision arithmetic for φ < 0.003 causes the SNR to drop below 80 dB and introduces

an audible tuning error due to coefficient quantization. In order to solve the amplitude issue,

we first note that the desired new value of x1 is linked with x2 by the phase increment φnew:

Combining ()newnx ϕϕϕ ++= 01 sin and ()02 sin ϕϕ += nx yields

() () newnew nnx ϕϕϕϕϕϕ sincoscossin 001 +++= and finally

newnew xxx ϕϕ sin1cos
2

221 −±= .

The new output amplitude is 1; consequently this should also have been the case before (as

with the suggested initial conditions). Roundoff errors may lead to excess amplitude, so we

have to limit |x2| to 1 before taking the root. Regular state updates without actually changing

the frequency help to stabilize the amplitude. Determining the sign is not trivial: Probably the

best way is to add another delay element. Before the frequency update, the states are:

()()01 1sin ϕϕ ++= nx and ()()03 1sin ϕϕ +−= nx . Therefore

() ϕϕϕ sincos2 031 +=− nxx , which has the sign of cos(nφ+φo).

Whenever φ changes, we just set the new state x1 according to the formula

() () newnewnew xxxxx ϕϕ sin1sgncos
2

23121 −−+= with φnew = 2πfo(new)/fs

before the next value of x1 is calculated. The oscillator will then seamlessly proceed at the

new frequency. There must be at least one unit delay between consecutive changes lest the

value of x3 is incorrect. Rewriting the equation, only the cosine function has to be computed:

() () ()()newnewnew xxxxx ϕϕ 22

23121 cos11sgncos −−−+= .

z
-1

-
z

-1

2cosφ

x2 x1
z

-1

x3

out

Digital Sound Generation Beat Frei, 10-07-19, ICST 54/85

2.1.3 Chamberlin Oscillator

Another interesting approach is the state variable filter described in [6] with Q set to infinity

(Fig. 73).

Fig. 73: Chamberlin Sinusoidal Oscillator

[] []nn xx


















−








−

=+

1
2

sin2

2
sin2

2
sin21

1

2

ϕ

ϕϕ

 ; SSE of the Chamberlin Oscillator

Suggested initial conditions: x = (1, -sin(φ/2)) or (0, cos(φ/2)).

Both eigenvalues λ1,2 = e
±iφ

 are complex conjugate and located on the unit circle, hence the

system actually oscillates at fo = φfs/(2π). At low frequencies, the outputs are approximately

orthogonal. The exact phase relationship is obtained from the transfer function:

()
1

1

12
1

2/sin2
)(

−

−

−
=

z

z
zH

ϕ
 () ())(arg 1212

ϕϕφ i
eH=

() () () ()
() 22/sin2

2/sin2
arg

2/sin2
arg

1

2/sin2
arg

2/

2/2/

2/

12

ϕπ

ϕ

ϕϕϕ
ϕφ

ϕ

ϕϕ

ϕ

ϕ

ϕ +
−=








=









−
=









−
=

−

−

−

−

−

i

e

ee

e

e

e
i

ii

i

i

i

We also see that both outputs have identical amplitudes: 1)(12 =ϕi
eH .

If we want perfect orthogonality, the pair x1[n] and x2m[n] = (x2[n] + x2[n+1])/2 does the job

at the expense of a slight amplitude difference: ()2/cos)(12 ϕϕ =i

m eH .

Like the Coupled Form type, this oscillator is insensitive to quantization errors and works

well with single precision arithmetic down to the infrasonic range. Moreover, only one tuning

coefficient is required. Frequency changes do not induce a discontinuity at the outputs as they

are tapped off integrators - however, a minor amplitude change occurs due to the frequency

dependent deviation from orthogonality. Saturation arithmetic combined with slightly

increased feedback by setting α to 1 + 0.01φ instead of 1 eliminates this effect and any

amplitude drift caused by roundoff errors. If saturation is applied only to x1, the resulting

harmonics are reduced in x2 by the low pass action of the integrator.

Depending on the desired tuning accuracy and the ratio of maximum frequency to sample

rate, one may experiment substituting polynomials for trigonometric functions or even 1 for

cosφ and φ for sinφ in the Coupled Form and the Chamberlin oscillator. In the former, the

amplitude must be limited by clipping or saturation as the approximation moves the poles

outside the unit circle. Immediate absolute phase control is possible by setting the states

directly using trigonometric functions.

z
-1

-
z

-1

2sin(φ/2)

x2 x1

(α)

Digital Sound Generation Beat Frei, 10-07-19, ICST 55/85

2.2 Oscillators based on Discrete Summation Formulae (DSF)

In section 1.5 we adopted the concept of a bandlimited impulse train (BLIT) to derive classic

waveforms. There’s a way to calculate an ideal BLIT by combining a summation formula for

the Geometric series with Euler’s formula [7]:

()
[] () ()[]

∑∑∑
=

+−+−

==

−
=

−
==

N

n

atjnatjntnjtnjN

n

n
N

n

n

j

ee

j

ee
atnaNatblits

1

lnln

11 22
sin),,(

ωωωω

ω

() ()
[]() []()










−

−
−

−

−
⋅=−=

+−

+−+

+

++

=

+−

=

+ ∑∑ atj

atjN

atj

atjNN

n

atjn
N

n

atjn

e

e

e

e

j
e

j
e

j
Natblits

ln

ln1

ln

ln1

1

ln

1

ln

1

1

1

1

2

1

2

1

2

1
),,(

ω

ω

ω

ω
ωω

() ()() ()
() 2

21

cos21

sin1sinsin
),,(

ata

tNatNata
Natblits

NN

+−

++−
=

++

ω

ωωω
, and in an analogous way

() () ()() ()
()

1
cos21

cos1coscos1
cos),,(

2

21

1

−
+−

++−−
==

++

=

∑
ata

tNatNata
tnaNatblitc

NNN

n

n

ω

ωωω
ω

If we set a = 1, the BLIT has a flat spectral envelope. Converting the difference of the highest

frequency terms to a product and expressing the rest as half angle functions yields:

() ()()
() 








−

+
==∑

=

1
2/sin

5.0sin

2

1
cos),(

1 t

tN
tnNtblitc

N

n ω

ω
ω

() () ()[] ()2/cotcos1
2

1
sin

2

sin
),(

1

1

ttNtn
tN

Ntmblits
N

n

ωωω
ω

−=+= ∑
−

=

() () () ()[]12/cotsin
2

1
cos

2

cos
),(

1

1

−=+= ∑
−

=

ttNtn
tN

Ntmblitc
N

n

ωωω
ω

The first expression can be evaluated with reasonable effort on most floating point processors

using two linearly interpolated sine table lookups and a division. The number of harmonics N

is set whenever the fundamental frequency changes but does not follow pitch modulation (the

same scheme as with wavetable synthesis). The main advantage of such a DSF-BLIT is the

complete absence of aliasing at any fundamental in the whole audio band. Unfortunately,

there’s no closed-form solution to produce time integrated descendants to emulate classic

waveforms. Instead, they must be generated by subsequent integration sacrificing immediate

phase control.

Remarkably, some expressions are free of the time consuming division. On the other side, the

cotangent is singular at integer multiples of π and the function has maxima within an order of

magnitude of N. For the following, we concentrate on mblitc(t,N), because this function

results in a bandlimited sawtooth when integrated. A different factorization eliminates the

singularity. After amplitude normalization and substituting φ for ωt, we get:

() () ()
NN

N
n

N

N
Nmblitcn

N

n 2

1

2
cot

2

sin
cos

2

cos1
),(

1

1

−























=








+= ∑

−

=

ϕϕ

ϕ

ϕ
ϕ

ϕ
ϕ

This function is even and periodic in 2π. Therefore, φ can be confined to the range [-π/2, π/2]

for evaluation. Both products are limited to a magnitude of 1. While the second term

resembles an upside-down parabola and calls for polynomial approximation, the Sinc would

require an impractically large table, even with linear interpolation, because N hits 1000 if the

oscillator operates at a fundamental of 20 Hz. We already know that this kind of problem can

Digital Sound Generation Beat Frei, 10-07-19, ICST 56/85

be solved by windowing at the expense of a broader spectrum. It turns out that a train of

bandlimited impulses from section 1.3 is more efficient in terms of arithmetic operations and

memory, but since the windowed DSF-BLIT approach still crops up now and then, we

nevertheless give an example.

A limit of |Nφ| < 12π combined with a simple approximation for xcot(x) has proven sufficient

to keep aliasing down by 80 dB up to a fundamental of 4 kHz on a system with fs = 48 kHz.

Low aliasing at higher fundamentals would require a more precise approximation. For

compactness, we normalize and wrap φ to [-1,1] to get the windowed BLIT system listed

below with the spectrum of Fig. 74.

() ()

()[]
N

NsNmblitcn

N

N
NwNs

||N
N

Nw

2

1
1),(

sin
)(

otherwise0

12for
122

cos
)(

2

2

2

−−≈

=








<




















=

ϕϕϕ

ϕπ

ϕπ
ϕϕ

ϕ
ϕπ

ϕ

[] []
[] [] []

()o

so

ffloorN

ff

nn

/22000

/2

:UpdateFrequency

21n1n then 11n if

1

: UpdatePhase

=

=∆

−+=+>+

∆+=+

πϕ

ϕϕϕ

ϕϕϕ

When the function s(Nφ) is tabulated, at least 30000 entries for one of the symmetrical halves

are recommended for non-interpolated readout; about 1000 are sufficient if linear

interpolation is applied.

Fig 74: Windowed DSF-BLIT Spectra

A BLIT is typically used as an excitation signal for resonating systems like formant and comb

filters or physical models. As we already know, it can also be integrated to make a sawtooth.

Such a system is shown in Fig. 75 and employs a low pass filter as a leaky integrator, whose

frequency tracking prevents amplification of residual bias and aliased components below the

fundamental.

To conclude the foregoing, the DSF-BLIT oscillator is mainly attractive if division is

executed fast and the BLIT is used in its original form. It is also first choice in applications

where a perfectly pure or exponentially decaying spectrum is essential.

Digital Sound Generation Beat Frei, 10-07-19, ICST 57/85

Fig. 75: DSF-BLIT Sawtooth Oscillator

wrap ∆φ

control
pitch + portamento,

no modulations

blitc(φ,N)
φ

N

z
-1

z
-1

-

∆φ/4

Digital Sound Generation Beat Frei, 10-07-19, ICST 58/85

2.3 Oscillators based on Integrated Prototype Signals

2.3.1 Differentiated Parabolic Wave (DPW) Oscillator

These oscillators have been introduced in [15] and attract some interest due to a complexity

between the naive and the BLIT-based approach. A train of parabolic segments can be

constructed in a way that the harmonics decrease at 1/f
3
 thus reducing the risk of fold-over.

This signal is then differentiated to get the desired shape. In a discrete time realization, finite

difference is used to approximate continuous time differentiation. Since both operations are

linear, no aliasing occurs at this stage. Furthermore, their high pass characteristic helps to

suppress aliased components below the fundamental. The triangle oscillator is an especially

useful embodiment of this concept since the signal has low harmonic content and alternatives

are computationally intensive.

Fig. 76: DPW Triangle Oscillator

Fig. 77: Signals in the DPW Triangle Oscillator

Harmonic analysis of the parabolic segment train yields for the sampled values:

[] ()kTnf
n

kB o

n

π
π

2sin
18

,..5,3,1
33 ∑

∞

=

=

wrap x-x|x| z
-1

 z
-1

-

fs/(2f) z
-1

A B D C
fn

k D

B

A

1

0.25

1

Digital Sound Generation Beat Frei, 10-07-19, ICST 59/85

Due to its spectral properties, the signal B[k] can replace a sinusoid when purity is uncritical

(e.g. in LFOs) or in sub oscillators as long as the fundamental remains below fs/20.

The signal C[k] is obtained directly from B[k]:

[] [] [] () ()[]TknfkTnf
n

kBkBkC oo

n

)1(2sin2sin
18

1
,..5,3,1

33
−−=−−= ∑

∞

=

ππ
π

[]
()

















−= ∑

∞

=

Tknf
n

Tnf
kC o

n

o

2

1
2cos

sin16

,..5,3,1
33

π
π

π

For frequency components well below fs, the condition πnfoT << 1 holds and C[k] can be

approximated as:

[] 















−≈ ∑

∞

=

Tknf
n

Tf
kC o

n

o

2

1
2cos

116

,..5,3,1
22

π
π

The Fourier series of a discrete time triangle is: [] ()kTnf
n

kTri o

n

π
π

2cos
18

,..5,3,1
22 ∑

∞

=

=

From the above we conclude the following:

1. The scaling factor becomes fs/(2fo).

2. The output is time shifted by half a sampling period.

3. The relative amplitude deviation for a component at the frequency f is sin(πf/fs)/(πf/fs).

Example: For f = 20 kHz and fs = 48 kHz, an attenuation of 2.6 dB occurs. Hence, post

filtering may be omitted.

4. Aliased components can be calculated directly using the fact that a discrete time

sinusoidal has an fs-periodic spectrum. Example: fo = 5 kHz, fs = 48 kHz. The first

component that is aliased below fo occurs at n = 9 because |fs – 9fo| < fo.

5. The closer a component gets to a multiple of fs, the weaker it becomes. This reduces

aliasing to low frequencies and is a very desirable consequence of taking the time

difference (which has the magnitude response 2sin(ωT/2)).

Fig. 78: Spectrum of the DPW Triangle Oscillator (fo = 2.05 kHz, fs = 48 kHz)

Digital Sound Generation Beat Frei, 10-07-19, ICST 60/85

Aliased components one octave below the fundamental fo are down by 80 dB for fo ≈ 0.06fs

and increase quickly to 63 dB for fo ≈ 0.1fs. Therefore, typical applications are sub oscillators

and LFOs. On a double rate system, one might also consider using it as a main oscillator, at

most with the top octave wrapped or replaced by a sinusoid. For this purpose, immediate

phase control is feasible by calculating both B[k] and B[k+1] whenever the phase is set to a

new value.

A sawtooth oscillator can be constructed following the same principle. Since the source signal

is a train of non-alternating parabolic segments, its first derivative has discontinuities at the

segment ends and the spectrum consequently declines only by 1/f
2
. This algorithm is

recommended for audio purposes up to a fundamental frequency of fs/50, which may be

suitable for a fast LFO or a sub oscillator on a 96 kHz system.

Fig. 79: DPW Sawtooth Oscillator

Fig. 80: Spectrum of the DPW Sawtooth Oscillator (fo = 1.15 kHz, fs = 48 kHz)

It should be mentioned that the very economical algorithm and its topology encourage

oversampling (s. [15] for examples).

One may be tempted to extend the operating range using a smoother shaper function like x-x
3

instead of x
2
 and then differentiate twice. This approach has severe drawbacks: High precision

arithmetic is required, a one-sample spike occurs when the frequency is changed abruptly, the

extension for immediate phase control is cumbersome, and finally it covers about half the

frequency range of a BLIT-based oscillator with comparable computational effort. Therefore,

we don’t pursue this idea further. Instead, we are going to investigate the working principle

with the intention to eliminate differentiators altogether and generalize the idea. It turns out

that DPW oscillators can be viewed as an efficient realization of segment-based oscillators in

which the segment is obtained by convolving the naïve waveform with rectangular pulses.

wrap x
2
 z

-1
 z

-1

-

fs/(4f) z
-1

fn

Digital Sound Generation Beat Frei, 10-07-19, ICST 61/85

2.3.2 Segment-Based Integrated Prototype Signal (SIPS) Oscillator

First, we observe that in a DPW system the unit time delay z
-1

 can be replaced by a

continuous time delay T without affecting the behaviour. Therefore, the discrete time system

is equivalent to a continuous time model whose output is sampled at intervals T. For further

analysis, we will treat it as continuous.

The goal is to render a trivial non-bandlimited prototype signal x(t) with minimal aliasing. At

the input of the delayed difference block (Fig. 76, node B) we see the time integral X(t) of the

prototype signal. X(t) equals the total area under the graph of x(t) (Fig. 81). The continuous

output signal is the area difference within an interval T. In the discrete time system, the output

is just this signal sampled in intervals of T.

Fig. 81: Working Principle of Integrated Prototype Signal Oscillators

This process is equivalent to convolving the prototype signal x(t) with a rectangular pulse of

width T followed by sampling at intervals of T. Consequently, the spectrum of x(t) is

weighted by the spectrum Srect(f) of the pulse before the output signal is sampled.

Because

()
()s

s

rect
ff

ff
fS

/

/sin
)(

π

π
=

exhibits zeros at integer multiples of the sample rate fs, the output contains much less low

frequency aliasing than a sampled prototype signal would.

It’s important to see that two continuous time signals are convolved, so it’s not the same as

with the sample-based oscillator: Sliding a window over the prototype function and evaluating

it in intervals of T would fail deplorably at discontinuities. The reason is that we would

approximate the areas by single values obtained from sampling the prototype function at

multiples of T around the current location. This is equivalent to sampling the prototype signal

after it has been convolved with a discrete time version of the window, which does not have

zeroes at multiples of fs but a spectrum periodic in fs.

From the above discussion we see, that the only thing we can do, is to find out how to

calculate the continuous time convolution for a given prototype function.

Prototype Signal x(t)

T T

This area is the output at (k+1)T

This area is the output at kT.

Sections below the abscissa are

counted negative.

t

Digital Sound Generation Beat Frei, 10-07-19, ICST 62/85

Fortunately, this is possible for the sawtooth and results in the system depicted in Fig. 82.

Fig. 82: SIPS Sawtooth Oscillator

Since the SIPS sawtooth oscillator inherits the limited useful operating range from the DPW

analogue, we might wish to go one step further and design higher order versions by repeated

convolution of the sawtooth with the rectangular pulse. For convenience, we avoid nasty

algebra, perform the convolution numerically with a technical computing tool, and exert a

polynomial fit to the result. The 2
nd

 order case yields a simple closed form solution (Fig. 83).

Fig. 83: Second Order SIPS Sawtooth Oscillator

Fig. 84: Spectrum of the Second Order SIPS Sawtooth Oscillator

(fo = 3.87 kHz, fs = 48 kHz, no Postfilter, Red Line = Ideal Sawtooth Spectral Envelope)

wrap y(x) z
-1

y(x) = sgn(x)(1-|x|)(fs/fo - 1) ; |x| > 1 - fo/fs

 x ; else

fn

wrap y(x) z
-1

y(x) = sgn(x)[1 + (|x|-1)fs/(2fo)]
2
 ; |x| > 1 - 2fo/fs

 0 ; otherwise

-
wrap

φ

Hpf fn

Digital Sound Generation Beat Frei, 10-07-19, ICST 63/85

This algorithm supports immediate phase control and performs well as a sub oscillator. We

may even consider it as a main oscillator in 96 kHz systems. A postfilter Hpf could be inserted

to equalize the [sin(πf/fs)/(πf/fs)]
2
 frequency response caused by the double convolution with

the pulse:

()
125.075.0

1
−+

=
z

zH pf .

Higher orders lead to polynomials of at least 6
th

 degree. In this case, the VA sawtooth

oscillator is preferable since it has been tailored in the frequency domain for lowest audible

aliasing.

We may notice that the function of the second order SIPS oscillator has a continuous first

derivative at the segment boundaries. This is not as surprising as it seems: Any polynomial

with the two lowest order coefficients being zero would satisfy this condition because the first

derivative of the simple sawtooth is constant at those points. Unfortunately, this is no shortcut

to better segments since a higher order polynomial from scratch namely produces the

expected steeper spectral roll-off, but not necessarily the essential zeroes at or near multiples

of the sample rate.

Digital Sound Generation Beat Frei, 10-07-19, ICST 64/85

2.4 Oscillators based on Polynomial Shaping (PS)

2.4.1 Chebyshev Polynomial Shapers

Chebyshev polynomials of the 1
st
 kind are defined by cos(nφ) = Tn(cosφ). Feeding such a

polynomial with a sinusoidal wave generates the pure n-th harmonic of the fundamental. If the

source delivers a quadrature signal, it’s also possible to produce orthogonal harmonics using

Chebyshev polynomials of the 2
nd

 kind, which are defined by sin(nφ) = sinφUn-1(cos φ).

n Tn(x) Un-1(x)

1 x 1

2 2x
2
-1 2x

3 4x
3
-3x 4x

2
-1

4 8x
4
-8x

2
+1 8x

3
-4x

5 16x
5
-20x

3
+5x 16x

4
-12x

2
+1

For an output ()∑
=

=
5

1

cos)(
n

n tnAty ω and ()∑
=

=
5

1

sin)(
n

nq tnBty ω the amplitudes can be packed

into the coefficients of single polynomials: ∑
=

=
5

1

)(
n

n

nQ xaxP and ∑
=

=
5

1

)(
n

n

nI xbxP .

n an bn

1 A1-3A3+5A5 B1-B3+B5

2 2A2-8A4 2B2-4B4

3 4A3-20A5 4B3-12B5

4 8A4 8B4

5 16A5 16B5

Chebyshev series may also be evaluated efficiently by Clenshaw’s recurrence.

Fig. 85: CPS Oscillator

The CPS oscillator supports immediate phase control. If we only need 2
nd

 and 3
rd

 harmonics

without quadrature output, replacing the cosine wave by a naïve triangle is an alternative. The

following polynomials will make the modified oscillator sound good up to fo = fs/12:

n Tn(tri_to_cosine)(x)

1 0.070726x
5

– 0.64089x
3

+ 1.57007x

2 0.8989x
6
 - 3.7774x

4
+ 4.8750x

2
 - 0.9980

3 4.7898x
7
 - 15.5577x

5
+ 16.3975x

3
- 4.6331x

PQ(x)

PI(x)

y

yq

wrap φ cos(x)

sin(x) wrap z
-1

 fn

Digital Sound Generation Beat Frei, 10-07-19, ICST 65/85

For n > 3, it’s better to convert the triangle to a sinusoid and shape it afterwards.

2.4.2 Polynomial-Shaped Triangle Oscillator

In a completely different semi-empirical approach, we now try to replace the rather complex

VA triangle oscillator. Aware that a bandlimited triangle can be formed from a simple one by

subtracting a fixed length constant segment scaled proportionally to the fundamental

frequency, we come to the following idea: Take a polynomial that converts a triangle into a

sine and hope for the scaling to work satisfactorily. Such a design philosophy rarely yields

professional results, but as the harmonics roll off quickly and the desired output is already

sinusoidal at fo = 6.6 kHz, we might once be lucky.

The ideal segment length turns out to be 3 in the main range, but then a sinusoid won’t be

generated below fs/3 = 16 kHz, so the length is gradually changed in the transition region.

Switching would also work if the amplitude is adjusted accordingly to avoid a discontinuity.

()
116.084.0

1
−+

=
z

zH pf

Fig. 86: Bandlimited Wide Range PS Triangle Oscillator

The spectrum is quite clean and makes this oscillator a valuable alternative to the VA type. It

can be expected to generate slightly more than half the processing load and delivers a

sonically pleasant signal with aliasing unlikely to be heard. When customized appropriately, it

performs excellent on a 96 kHz system.

wrap y(x) z
-1

Frequency Update

flim = 6fo/fs

r = min(1, (flim + 16flim
16

)/2)

s = 1 - r

invs = 1/r

wrap φ Hpf 2|x|-1

Audio Update

y(x) = sgn(x) ·invs·(|x|-s) ; |x| > s

0 ; otherwise

p(x) = (0.04575x
5
 - 0.40889x

3
)r

p(x) fn

Digital Sound Generation Beat Frei, 10-07-19, ICST 66/85

Fig. 87: Spectra of the Wide Range PS Triangle Oscillator

(fo = 4.2 kHz and 15.5 kHz, fs = 48 kHz)

2.4.3 Higher Function Shapers

Polynomial shaping of a sinusoid provides exact control over individual harmonics and is

inherently band-limiting as the highest harmonic equals the degree of the polynomial. The

overhead is rather high though. Sometimes, it’s more desirable to have simple bandwidth

control over a naturally evolving spectrum. Some window functions and their time integral

perform very well as shapers in this case. An interesting choice is the Gaussian, which leads

to a spectrum whose magnitude is described by modified Bessel functions of the 1
st
 kind In(x):

It shows the steep decline of an FM spectrum without exhibiting dips. If we feed the Gaussian

with a sine wave, a BLIT is produced:

() ()()2sin ft
etxBLIT

πβ
= ; β = bandwidth control, f = fundamental frequency

Fig. 88: Gaussian-Shaped Sinusoidal BLIT (discrete time version)

Digital Sound Generation Beat Frei, 10-07-19, ICST 67/85

Spectrally, it is quite similar to the WSO-BLIT but with improved evenness, a slight

advantage that might occasionally justify the appreciably higher resource requirements.

While bell-shaped functions are suitable to create an impulse train, sigmoidal shapes may be

used for square wave generation. The VA pulse oscillator does of course fit that purpose too if

the duty cycle is set to 50%, but this would be a sheer waste of processing time. Instead, a

simple triangle is shaped by the error function erf(x), the time integral of the Gaussian, and β

scales the input to adjust the bandwidth. This approach yields a high-quality bandlimited

square wave using the embodiment of Fig. 89.

()
136.064.0

1
−+

=
z

zH pf

Fig. 89: Square Wave Oscillator using Error Function Shaped Triangle

The factor in the calculation of β may be tuned further by starting with 0.31 and linearly

diminishing it to 0.28 between fo = 2 to 4 kHz. The error function is preferably tabulated up to

an argument of ±3 and set to ±1 outside this range.

Fig. 90: Square Wave Oscillator Spectrum

This system works great in sub oscillator applications. If pulse width modulation is

dispensable and switching to a sinusoidal for fundamentals above fs/6 is implemented, it may

even serve as a main oscillator. Furthermore, varying β enables filter-less bandwidth control.

We finish this section mentioning that several synthesis methods can be modelled as a special

case of wave shaping. An example is FM synthesis, where the connection is uncovered by

applying trigonometric addition theorems to a PM signal [8].

wrap z
-1

 wrap

φ

Hpf 2|x|-1 erf(βx)

β = 0.3fs/fo

fn

Digital Sound Generation Beat Frei, 10-07-19, ICST 68/85

2.5 Phase Distortion (PD)

Any oscillator based on a phase accumulator can be extended with phase distortion (PD)

capabilities. The idea is to shape the linearly increasing phase signal of the accumulator such

that the original waveform of the oscillator is distorted in order to produce more harmonics

within a well controlled band. In the Eighties, commercial PD synthesizers were built,

although with moderate success, mainly because the competing FM synthesizers generated

more complex spectra. With the revival of analog timbres and today’s digital filters, there’s

good reason to reanimate this method.

Fig. 91 depicts the basic setup. fPD is the shaper, preferably a sigmoid type function if we

intend to modify an arbitrary waveform. fWV translates a linearly increasing phase into the

undistorted original waveform. Both functions assume an input range of [-1, 1] and deliver an

output range of [-1, 1]. The complex arrangement to the right is just to cross fade from the

distorted to the original phase when the modulation index m is below 1. In applications where

it either always or never exceeds 1, the circuit can be simplified. Since PD potentially

generates bias, a DC trap should follow the output.

Fig. 91: Basic PD Setup

Fig. 92: Spectrum of the Basic PD Setup

(m = 1, fWV = sin(πx), fPD = 0.39675x
5
 – 1.2935x

3
 + 1.89675x)

wrap fWV(x) z
-1

wrap fPD(x)

max(m,1)

-

max(m,1)

m

-

(1,1)

fPD

φ

fn

Phase Distortion Circuit

Digital Sound Generation Beat Frei, 10-07-19, ICST 69/85

Sigmoidal functions allow parametric control of the slope while they remain bounded and

saturate smoothly. The major criterion is spectral compactness since we want a lot of

harmonics with minimal aliasing. Integrated window functions with zero 1
st
 and small 2

nd

derivatives at the boundaries perform very well. Recommended shapers for sine and cosine

waveforms are listed below.

fPD(x)

(± 1 for |x| > 1)
fWV = sin x fWV = cos x

x + sin(πx)/π + +

0.39675x
5
 – 1.2935x

3
 + 1.89675x + +

1.5x – 0.5x
3
 - o

Some general statements can be made regarding these functions: It’s less critical to shape a

cosine because it already has zero 1
st
 derivatives at the boundaries; the resulting low pass

spectrum is however biased. A shaped sine acquires a band pass characteristic for high

modulation indices but remains unbiased.

The input to the waveform function fPD must span the interval [-1, 1] in order to complete a

whole cycle. Hence, the modulation index m should be bounded to above 1 for the functions

listed. We may cross-fade the shaped into the original phase signal for m < 1 and reduce m

towards zero with increasing fo to morph the oscillator output into a sinusoid for very high

fundamental frequencies. A more sophisticated, although a bit luxurious, realization replaces

fWV(x) by fWV(x)/fWV(m).

When phase modulation is applied to the basic setup, FM spectra with enriched harmonics

controlled by the PD modulation index are generated. Moreover, the annoying timbre of

overdosed FM, which would be needed to create comparable harmonic content without PD, is

completely absent.

A PD-BLIT is obtained by shaping a cosine and subtracting the bias. Compared to the WSO-

BLIT, the postfilter must have about twice as much gain at 20 kHz, which is disadvantageous

when the BLIT is modulated as the filter will then process a modified spectrum and its higher

influence causes stronger spectral errors. However, this approach is recommended on double

rate systems, where a simpler shaping function suffices and filter action is moderate.

Fig. 93: Unfiltered PD-BLIT Spectrum

(fWV = cos(πx), fPD = 0.39675x
5
 – 1.2935x

3
 + 1.89675x)

Digital Sound Generation Beat Frei, 10-07-19, ICST 70/85

2.6 Oscillators based on Windowed Segments

2.6.1 Principles

This versatile oscillator class occurs in a bewildering variety of embodiments whose

suitability depends on the actual application and hardware infrastructure. However, the

synthesis part is usually realizable with building blocks and techniques we already discussed.

The generic signal structure (Fig. 94) resembles those of a hard synced slave oscillator. The

spectrum is the convolution of the spectra of a window function w(t) and an oscillating

function s(t) sampled at multiples of the repetition rate fo. In a discrete time realization, the

segment start will usually not coincide with a sample point; something that is occasionally

neglected for simplicity but has to be considered when the algorithm should sound good for

fundamentals above a few 100 Hz.

Fig. 94: Generic Windowed Segment Oscillator (WSO)

This setup can generate formants without using filters: The frequency of s(t) determines their

centre, the width is inversely proportional to the length of w(t), and the fundamental

frequency equals the repetition rate. Major criteria for the combination of w(t) and s(t) are

smoothness with a corresponding steep spectral roll-off, finite support, parametric control,

and low computational demand. Some classical algorithms, originally invented to model the

human voice, are (continuous time prototype functions of a single cycle shown):

Method s(t) w(t)

VOSIM ()ϕω +ts

2sin

() ()
[] τα

τ
τ

Nt

Ntt
tfloor

≤≤

>∨<

0;

0;0
/

τ = 1/(πωs), N integer, Nτ < To, 0 ≤ α ≤ 1

FOF ()ϕω +tssin
()() β

β

βπ

α

α

/1;

/10;

0;

cos1
2

1
0

≥

<<

≤

−

−

−

t

t

t

e

et

t

t

0 < α, β

Modified FOF ()ϕω +tssin

() ()()

()() ()()()

() ()

()
() oo

o

o

t

oo

t

t

TtT

Tt

t

Ttt

etTtT

e

ett

<≤−

−<≤

<<

≥∨≤

−−−

−

−

−

−

β

ββ

β

ββ

ββ

α

α

α

/1;

/1/1;

/10;

0;

23

23

0

32

32

0 < α, β

t

To

w(t)

s(t)

Time Domain Spectral Domain

f

fo = 1/To

W(f)

S(f)

0

Digital Sound Generation Beat Frei, 10-07-19, ICST 71/85

2.6.2 VOSIM

Let’s look at a VOSIM [9] example to get familiar with windowed segment oscillators.

Typical VOSIM spectra have a formant peak and a strong cluster around the fundamental that

adds to the body of the sound. The special case of two adjacent full scale cycles leads to a

particularly efficient realization of a bandlimited formant oscillator. For fundamentals above

fs/12, the output fades into a sinusoid in the system shown (Fig. 95).

Fig. 95: Basic VOSIM Formant Oscillator

Fig. 96: Basic VOSIM Formant Oscillator Spectra (at node C)

wrap φ x
2
 sin(πx)

wrap z
-1

1

-1

ffmt/(2fo)

fo/ffmt

-

ffmt ≥ 2fo, ffmt = 2fo for fo > fs/12

(ffmt/(2fo))
1/2

C A B

fn

Digital Sound Generation Beat Frei, 10-07-19, ICST 72/85

Fig. 97: Continuous Time Prototype Signals in the Basic VOSIM Formant Oscillator

Within the system’s operating range, the spectra of the continuous time prototype signal and

the discretized version barely differ. We calculate the Fourier series with τ denoting the width

of a single raised cosine segment to obtain the amplitudes An of the harmonics at node C in

Fig. 95:

() ()
()

()[]2
/1

/2sin
/2cos

2

/2cos12
2

o

o

o

o

nn
Tnn

Tn
dtTnt

t

T
aA

τπ

τπ
π

τπ
τ

τ −
=




 −
== ∫

−

 ; n ≥ 1

oo TA /τ=

Starting at the low end, the spectrum exhibits a dip at n ≈ To/(2τ), peaks for n ≈ To/τ with a

value An ≈ τ/(2To), and then asymptotically decays at -18 dB/octave. The approximate

formant frequency ffmt is linked to τ by the relation ffmt = nfo = 1/τ. Bias compensation is

realized by subtracting Ao = τ/To = fo/ffmt from the output. We deduce from the time domain

that the signal energy is proportional to τ/To and therefore also to fo/ffmt for 2τ < To. This leads

us to the employed normalization scheme.

When synchronous VOSIM signals with identical fundamentals are superimposed, the

fundamental regions add up in phase. The same also holds for adjacent formant components.

In practical applications, it’s often a good idea to invert one of the VOSIM signals. While

such a system sounds pleasant and is real fun to experiment with, we should be aware of

alternatives that provide easier handling of spectral control, a feature coming to great

advantage in the precise emulation of the human voice and other formant-based instruments.

In the next two subsections, we are going to follow up the idea of combining two simple

segments and see what we get.

C

A

B

τ

To

t

Digital Sound Generation Beat Frei, 10-07-19, ICST 73/85

2.6.3 Modified VOSIM Formant Train Oscillator

An unbiased formant train without prominent fundamental region is obtained by inverting one

of the cosine segments. It sounds rich and features the interesting characteristic of a damped

pipe resonator. Unfortunately, the broad spectrum also makes it prone to aliasing, thus

limiting the recommended formant center frequency to about 2.5 kHz on a 48 kHz system.

However, we may replace band-limited impulses of section 1.3 for the raised cosines to

extend both formant and fundamental range to fs/8. Another option is to superimpose two

time-shifted BLITs of section 2.6.6.

Fig. 98: Modified VOSIM Formant Train Oscillator

(Recommended for double rate systems)

Fig. 99: Spectrum of the Formant Train Oscillator (not normalized)

wrap x|x| sin(πx)

wrap z
-1

1

-1

ffmt/fo

ffmt ≥ fo, ffmt < fs/20

φ

(ffmt/fo)
1/2

fn

Digital Sound Generation Beat Frei, 10-07-19, ICST 74/85

2.6.4 Wide Formant Oscillator (WFO)

We may wonder if it’s possible to further modify the preceding algorithm to render it useable

over the whole audio range. The crux is the raised cosine, which is just too narrow when

applied to every single segment. A way to stretch it without affecting the smooth borders and

the shape itself too much is to weight a single sine cycle with a raised cosine that extends over

the whole cycle:

() () ()






<

=

otherwise

fttftf
ty fmtfmtfmt

sgm

;0

2/1;cos2sin
33

8

)(
2 ππ

It turns out that this segment delivers a general purpose band pass spectrum when repeated. A

polynomial approximation may be used in the actual wide formant oscillator:

() () 4.8341x19.8169x-32.7775x27.8871x-12.5485x-2.4561x 357911 +++=≈ xPxysgm

Fig. 100: Wide Formant Oscillator (WFO)

Fig. 101: WFO Spectrum (not normalized)

For fundamental frequencies above fs/12, the output consists of the fundamental and the 1
st

harmonic at half the amplitude.

wrap P(x)

wrap z
-1

1

-1

ffmt/fo

ffmt ≥ fo, ffmt = fo for fo > fs/12

φ

(ffmt/fo)
1/2

fn

Digital Sound Generation Beat Frei, 10-07-19, ICST 75/85

2.6.5 Variable Width Formant Oscillator (VWFO)

Formant synthesis not only requires parametric width control but also much narrower peaks

than those provided by the WFO. This is easily achieved by varying the width of the raised

cosine window. In the system of Fig. 102, β sets the width relative to fo.

Fig. 102: Variable Width Formant Oscillator (VWFO)

Fig. 103: VWFO Spectrum (β = 1, not normalized)

Fig. 104: VWFO Spectrum (β = 6, not normalized)

wrap (cos(πx) + 1)/2

wrap z
-1

1

-1
φ

sin(πx)

ffmt/fo

β
1/2

 ffmt = fo for fo > fs/8

 β = max(fs/(8fo), 1)

wrap

β

fn

Digital Sound Generation Beat Frei, 10-07-19, ICST 76/85

Minimum formant peak width occurs for β = 1 and is determined by the spectrum of the

raised cosine. The resulting –6 dB bandwidth becomes BW-6dB ≈ 2βfo (approximately,

because the spectrum is symmetrical to the y-axis but with opposite signs, hence

superimposed components from one side partially cancel those of the other).

For fo > fs/8, the output of consists of the fundamental and the 1
st
 harmonic at half the

amplitude.

2.6.6 WSO-BLIT Oscillator

Windowed segment oscillators also make good variable bandwidth BLIT sources if an

appropriate bandlimited impulse segment is used. When VOSIM is configured to repeat a

single fixed width raised cosine segment, the spectrum can be made flat up to fs/8 without

introducing audible aliasing. This is ideal for voice synthesis where too much high frequency

content is perceived as unwanted buzz.

Full audio bandwidth BLITs are obtained by periodically repeating one of the bandlimited

impulses of section 1.3. At least 10 kWords of memory are recommended to tabulate the

segment for non-interpolated readout. Alternatively, the table look-up can be replaced by a

polynomial approximation. Large impulses will limit the maximum fundamental frequency

and lead to polynomials with over a dozen terms. Therefore, we stick to a short 4-sample

impulse and get the system shown in Fig. 105 with fo(max) = fs/4 and ± 0.8 dB ripple in the

spectrum. Approximating the square root instead of the segment itself saves two product

terms.

 () 10185.37647.35894.20583.12139.0 246810 +−+−+−= xxxxxxP

()
14.06.0

1
−+

=
z

zH pf

Fig. 105: WSO-BLIT Oscillator

If two time-shifted WSO-BLITs are added or subtracted, a variety of interesting spectra

including wide range versions of the basic VOSIM formant and the formant train oscillators

are obtained. Additionally, pulse width modulation is achieved by varying the time shift.

In general, the raised cosine may be replaced by a tailored bandlimited impulse in each of the

aforementioned designs in order to roughly double the useful frequency range.

wrap φ x
2
 P(x)

wrap z
-1

1

-1

-
fc/fo 0.3487fo/fc

(fc/fo)
1/2

0.234fs ≥ fc ≥ fo

Hpf fn

Digital Sound Generation Beat Frei, 10-07-19, ICST 77/85

Fig. 106: WSO-BLIT Spectrum (fc = 0.234fs, including bias, not normalized)

Fig. 107: WSO-BLIT Spectrum (fc = 0.026fs, including bias, not normalized)

Fig. 108: WSO-BLIT Spectrum (fc = fo, including bias, not normalized)

Digital Sound Generation Beat Frei, 10-07-19, ICST 78/85

2.6.7 FOF

FOF (fonction d'onde formantique) generates a band pass spectrum suitable for additive

formant synthesis. It outperforms VOSIM when straightforward control of the spectrum and

the ability to create narrow peaks are crucial. The latter is achieved at the expense of a long-

tailed (theoretically infinite) signal which in practice causes the computational effort to

depend on the parameters. FOF is a key ingredient of CHANT [10], a program for the

synthesis of the singing voice and other instruments.

Modified FOF has finite support and uses a polynomial that can be evaluated faster than the

cosine on today’s machines. Due to finite segment length, the minimum formant width is

limited by the fundamental.

In both methods, a DC trap should be added to eliminate any residual output bias.

Fig. 109: Modified FOF Spectrum

Fig. 110: Modified FOF Spectrum

Digital Sound Generation Beat Frei, 10-07-19, ICST 79/85

2.6.8 Remarks on Windowed Segment Oscillators and Formants

If the fundamental is bounded to the lower decades of the audio spectrum, one may consider

second order feedback sinusoidal oscillators to compute trigonometric functions as the

laborious setting of initial conditions occurs rarely and they can be tweaked for exponential

decay.

Some sophisticated algorithms have been developed and optimized to not produce spectral

dips when formants overlap (e.g. PAF, IRCAM, 95). When it comes to just adding a vowelish

timbre with low control overhead, delay-based comb filters are a great sounding option,

because they generate a formant train which is characteristic of many natural resonators.

Some ad hoc methods yield likewise spectra on commercial synthesizers, for example: FM

(often combined with Hard Sync), audio rate sawtooth modulation of the filter cut-off

frequency, nonlinear distortion of a band pass signal, vocoder techniques like feeding a 4
th

order band pass filter bank with a broadband spectrum.

So far, the segments have been parametric functions. Interesting applications like formant

preserving pitch shift arise from using samples or real-time audio as segments. Professional

systems of this kind tend to be very sophisticated and include a lot of signal analysis, so they

are not covered in the oscillator chapter. However, the main idea is simple enough to start

experimenting:

• Grab a section of a time-domain signal, weight it with a window function, and repeat it

at the desired fundamental frequency with or without overlap avoiding truncation.

• In the frequency domain, the following happens: The spectrum of the selected section

is convolved with the spectrum of the window and then discretized to multiples of the

new fundamental frequency.

The section length, and to a lesser degree the window type, are critical. For oscillator

purposes, a raised cosine window with a length of one period of the original signal is

suggested. Although there are elaborate methods for period estimation, simple autocorrelation

algorithms perform well enough to take first steps on tuned signals with a prominent

harmonic structure. A more advanced approach is described in [12].

Granular synthesis is a superset of segment-based oscillators with the extension that not only

the segments (called “grains”) but also their time of occurrence is arbitrary. This way,

harmonic as well as noisy and intermediate phenotypes are generated and morphed

interactively into each other. It should be mentioned that a Gaussian is often preferred to

trigonometric windows in this application.

Digital Sound Generation Beat Frei, 10-07-19, ICST 80/85

Appendix A: Oscillator Selection Guide

Type

S
e
c
ti
o
n

Im
m

e
d

ia
te

 P
h
a
s
e
 C

o
n
tr

o
l

Im
m

e
d

ia
te

 F
re

q
u

e
n

c
y
 C

o
n
tr

o
l

S
y
n
c
a
b
le

1
/f

 T
ra

c
k
in

g
 r

e
q
u
ir

e
d

R
e
c
o
m

m
e
n

d
e
d
 F

u
n
d

a
m

e
n
ta

l
F

re
q

u
e
n
c
y
 R

a
n
g
e

 @
 f

s
 =

 4
8
 k

H
z
 (

f o
/f

s
)

U
s
e
fu

l
F

u
n
d

a
m

e
n
ta

l
F

re
q
u
e

n
c
y
 R

a
n
g
e

@
 f

s
 =

 4
8
 k

H
z
 (

f o
/f

s
)

P
o
s
tf

ilt
e
r

/
D

C
 T

ra
p

 r
e
q
u
ir

e
d

F
M

 /
 P

M
 v

ia
 F

re
q

u
e
n
c
y
 I
n

F
M

 /
 P

M
 v

ia
 P

h
a
s
e

 I
n

S
p
e
c
tr

a
l
a
n
d
 T

e
m

p
o
ra

l
F

id
e
lit

y

P
ro

c
e

s
s
o
r

C
y
c
le

s

C
o
n
d
it
io

n
a
l
In

s
tr

u
c
ti
o
n
s
 @

 f
s

W
ra

p
 A

ro
u

n
d

M
e

m
o

ry
 (

k
W

o
rd

s
)

Sample-based 1.4 + + + N 0.46 0.46 N + + + o N N >100

VA Sawtooth + Pulse 1.5 + + + Y 0.25 0.33 Y + + + + Y Y 6

Dito, without table 1.5 + + + Y 0.25 0.33 Y + + + o Y Y 0

VA Triangle 1.5 + + + Y 0.25 0.33 Y + + + o Y Y 1

Dito, without table 1.5 + + + Y 0.25 0.33 Y + + + - Y Y 0

Sinusoidal FM/PM 1.7, 1.9 + + + N 0.46 0.46 N + + + + N Y 0

Dito, with Feedback 1.9.2 - + - N 0.46 0.46 Y + + + + N Y 0

Dito, Sawtooth 1.9.3 - + - N 0.46 0.46 Y + + o o N Y 0

Dito, Triangle 1.9.3 - + - N 0.46 0.46 Y + + o + N Y 0

Wavetable 1.10 + + + Y 0.46 0.46 N + + + + N Y 6..15

CF Sinusoidal 2.1.1 o + - N 0.46 0.46 N o - + ++ N N 0

DF1 Sinusoidal 2.1.2 o o - N 0.46 0.46 N - - + ++ N N 0

Chamberlin Sinusoidal 2.1.3 o o - N 0.46 0.46 N o - + ++ N N 0
DSF-BLIT 2.2 + + + N 0.46 0.46 N + + + - N Y 0..30

Windowed DSF-BLIT 2.2 + + + Y 0.12 0.20 N + + + o Y Y 1..30

DSF-BLIT Sawtooth 2.2 - + - Y 0.46 0.46 N + o + - N Y 0..30

DPW, Sawtooth 2.3.1 o + o Y 0.02 0.03 Y + o + ++ N Y 0

DPW, Triangle 2.3.1 o + o Y 0.08 0.12 Y + o + ++ N Y 0

SIPS, Sawtooth 2.3.2 + + + Y 0.02 0.03 Y + + + + Y Y 0

SIPS2, Sawtooth 2.3.2 + + + Y 0.08 0.12 Y + + + + Y Y 0

CPS 2.4.1 + + + N 0.46 0.46 N + + + o N Y 0

PS, Triangle 2.4.2 + + + Y 0.46 0.46 Y + + + + N Y 0

PS, Square 2.4.3 + + + Y 0.14 0.17 Y + + + + N Y 8

PD-BLIT 2.5 + + + Y 0.46 0.46 Y + + o + Y Y 0

VOSIM, Formant 2.6.2 + + + Y 0.23 0.23 N + + o + Y Y 0

Formant Train 2.6.3 + + + Y 0.04 0.05 N + + + + Y Y 0

WFO 2.6.4 + + + Y 0.23 0.23 N + + + + Y Y 0

VWFO 2.6.5 + + + Y 0.08 0.23 N + + + o Y Y 0

WSO-BLIT 2.6.6 + + + Y 0.23 0.23 Y + + + + Y Y 0

FOF, unlimited 2.6.7 + + - N 0.46 0.46 Y + + + - Y Y 0

FOF, truncated 2.6.7 + + + N 0.04 0.08 Y + + + o Y Y 0

FOF, modified 2.6.7 + + + N 0.08 0.12 Y + + + o Y Y 0

Notes:

1. If the maximum fundamental frequency exceeds 0.21fs, it can be extended to span the full
audio range by switching to a sinusoidal oscillator. For triangle and square wave oscillators a
lower limit of 0.14fs applies. On double rate systems, the limits become 0.105fs and 0.07fs
respectively.

2. A comparison of synthesis methods from a complementary viewpoint is given in [14].

Digital Sound Generation Beat Frei, 10-07-19, ICST 81/85

Appendix B: MATLAB Code

1. Bandlimited Impulse Generation using the Windowed Sinc Method

% parameters

fs = 48000; % sample rate

fc = 18300; % brick wall filter cut-off frequency

rlen = 10; % impulse length in sampling intervals

ppiv = 100; % points per sampling interval

beta = 9.0; % main window parameter

apof = 0.9; % apodization factor (0 = no apodization, 1 = max)

apobeta = 0.7; % apodization window parameter

% bandlimited impulse generation

pts = ppiv*rlen+1; % impulse length in points

 % one added to make a symmetrical impulse

x1 = 0:1:pts-1;

x2 = rlen*2*(x1 - (pts-1)/2 + 0.00001)/(pts-1);

x3 = pi*fc/fs*x2;

h = sin(x3)./x3; % brickwall filter impulse response

w = KAISER(pts,beta); % kaiser window

g = w.*h'; % get bandlimited impulse by applying the window

% apodization and normalization

aw = 1 - apof*KAISER(pts,apobeta);

g = aw.*g;

g = g/max(g);

% diagrams

figure(1);

subplot(1,2,1); %*** plot bandlimited impulse ***

plot(x2/2,g);

axis([-rlen/2 rlen/2 -0.2 1.0001]);

xlabel('Time in Sampling Intervals');

title('Bandlimited Impulse');

subplot(1,2,2); %*** plot spectrum ***

zpad = 20; % zero padding factor

g2 = [g ; zeros((zpad-1)*pts,1)]; % zero pad for higher resolution

wspec = abs(fft(g2));

wspec = max(wspec/max(wspec), 0.00001);

fmax = 60000; % maximum displayed frequency

rng = round(rlen*zpad*fmax/fs);

xidx = 0:1:rng;

semilogy(fmax/1000*xidx/rng,wspec(1:(rng+1)));

xlabel('Frequency in kHz');

title('Amplitude Spectrum');

grid;

% markers at 20 kHz, fs-20 kHz and fs

hold;

plot([20 20], [0.00001 1], 'g');

plot([fs/1000-20 fs/1000-20], [0.00001 1], 'r');

plot([fs/1000 fs/1000], [0.00001 1], 'r');

hold off;

Digital Sound Generation Beat Frei, 10-07-19, ICST 82/85

2. Compensation Filter for the High-Frequency Drop of the Bandlimited
Impulse

Attach it to the end of code in appendix B1.

% prefilter for sample-based oscillators

figure(2);

subplot(1,2,1);

fcomp = 21000; % compensate up to this frequency

rng = 1 + 2*floor(0.5*rlen*zpad*fcomp/fs - 0.5); % rng must be odd

xidx = 0:1:rng;

a = wspec(1:(rng+1));

a = 1.0./a;

ftune = 0.35; % to tune out rounding errors

f = xidx/(ftune+rlen*zpad); % frequency relative to fs

wgt = (rng+1)/2:-1:1; % better fit at low frequencies

wgt = 1 + wgt.*wgt;

b = remez(16,2.0*f,a,wgt) % calculate 17 taps FIR filter

[h,w] = freqz(b,1,rlen*zpad,'whole'); % calculate and plot magnitude response

plot(fs*f/1000,a,0.5*fs*w/pi/1000,abs(h));

axis([0 fs/1000 0 max(abs(h))]);

xlabel('Frequency in kHz');

title('Prefilter Magnitude Response');

grid;

% check by convolving prefilter and bandlimited impulse

subplot(1,2,2);

imp = g(1:ppiv:pts); % sample bandlimited impulse at fs

res = conv(b,imp'); % prefilter by convolution

res = [res zeros(1000-length(res),1)']; % zero pad for higher resolution

wspec = abs(fft(res));

rng = round(1000*20000/fs); % plot overall magnitude response

xidx = 0:1:rng;

plot(20*xidx/rng,wspec(1:rng+1)/wspec(1));

xlabel('Frequency in kHz');

title('Normalized Overall Magnitude Response');

grid;

Digital Sound Generation Beat Frei, 10-07-19, ICST 83/85

3. Bandlimited Sawtooth Segment Generation

% parameters

fs = 48000; % sample rate

fc = 15000; % brickwall filter cutoff frequency

rlen = 4; % impulse length in sampling intervals

ppiv = 2700; % points per sampling interval

beta = 8.3; % main window parameter

apof = 0.5; % apodization factor (0 = no apodization, 1 = max)

apobeta = 0.5; % apodization window parameter

% bandlimited impulse generation

pts = ppiv*rlen+1; % impulse length in points = table size in words

x1 = 0:1:pts-1;

x2 = rlen*2*(x1 - (pts-1)/2 + 0.00001)/(pts-1);

x3 = pi*fc/fs*x2;

h = sin(x3)./x3; % brickwall filter impulse response

w = KAISER(pts,beta); % kaiser window

g = w.*h'; % get bandlimited impulse by applying the window

% apodization

aw = 1.0 - apof*KAISER(pts,apobeta);

g = aw.*g;

% cumulative sum, normalization

g = cumsum(g);

g = 2.0*g/g(pts);

g(floor(pts/2)+1:pts) = g(floor(pts/2)+1:pts)-2.0;

g = g/max(g); %*** desired two-sided segment ***

Digital Sound Generation Beat Frei, 10-07-19, ICST 84/85

Appendix C: Miscellaneous

1. DC Trap

Audio signals may pick up a signal-dependent offset (a.k.a. bias) when they are generated or

processed. A large bias reduces the dynamic range of the system and leads to unexpected,

although sometimes pleasant, outcomes in nonlinear stages. However, it should be completely

absent in any final output signal. Adopting the name from radio frequency engineering, we

call the specific building block that eliminates the bias a DC trap. Analog and digital

embodiments are depicted in Fig. 111. As the cut-off frequency fg lies far below the sample

rate fs, we use the approximation e
jωT

 – 1 ≈ jωT with negligible error. Among several

topologies, the one shown is preferred because the desired audio signal bypasses the filter

circuitry without quantization and only a single multiplication is performed. A practical

choice for fg is about 5 Hz, which makes the trap fast enough to track offset changes but

causes only a moderate attenuation of 0.26 dB and a phase shift of 14° at 20 Hz.

()
()

() ()

RC
f

fff

ff
fG

g

gG

g

π

ϕ

2

1

/arctan

/1

1

2

=

=

+
=

()
()

() ()

π

α

ϕ

ω

2

/arctan

/1

1

2

s

g

gH

g

Tj

f
f

fff

ff
eH

≈

≈

+
≈

 ; fg << fs

Fig. 111: DC Trap

2. Frequency Update

Some oscillators require a valid pair of the frequency f and its inverse 1/f at any time.

Fortunately, the inverse doesn’t have to be very precise as it normally only determines the

bandwidth of the spectrum by defining the stretching factor of a table. If new value pairs

come in at a submultiple of the sample rate, the following update schemes are recommended:

1. An independent linear fade of f and 1/f between two value pairs that are within one

octave. In this case, the product is always too high during the transition (max. 12.5 % in

the middle) and exact at the end.

2. An exponential fade between two value pairs: f[n+1] = λf[n], f
-1

[n+1] = λ
-1

f
-1

[n]. The

determination of λ and its inverse involves logarithms, which may turn out to be less

cumbersome than it seems at first because the frequency is derived from a logarithmic

mapping in synthesizers.

R

C

in out z
-1

in

-
out

α

Digital Sound Generation Beat Frei, 10-07-19, ICST 85/85

Appendix D: References

[1] T. Stilson, J.O. Smith, “Alias-Free Digital Synthesis of Classic Analog Waveforms”,

CCRMA, http://www-ccrma.stanford.edu

[2] D.E. Knuth, “The Art of Computer Programming”, ISBN 978-0201485417

[3] R. Bristow-Johnson, “Wavetable Synthesis 101, A Fundamental Perspective”,

http://www.musicdsp.org/files/Wavetable-101.pdf

[4] A. Horner, various publications on Wavetable Synthesis, http://www.cse.ust.hk/~horner

[5] E. Brandt, “Hard Sync Without Aliasing”, http://www.cs.cmu.edu/~eli/papers

[6] H. Chamberlin, “Musical Applications of Microprocessors”, ISBN 978-0810457683

[7] J. A. Moorer, “The Synthesis of Complex Audio Spectra by Means of Discrete

Summation Formulae”, JAES, 1976, Vol. 24, pp. 717

[8] M. Le Brun, “Digital Waveshaping Synthesis”, JAES, Apr. 1979, Vol. 27, pp. 250

[9] W. Kaegi, S. Tempelaars, “VOSIM – A New Sound Synthesis System”, JAES, Jun.

1978, Vol. 26, pp. 418

[10] G. Bennett, X. Rodet, "Synthesis of the Singing Voice", Matthews, M.V. and J.R. Pierce,

eds.1989, Current Directions in Computer Music Research, MIT press, pp. 19

[11] A.H. Nuttall, “Some Windows with Very Good Sidelobe Behavior”, IEEE Transactions

on Acoustics, Speech, and Signal Processing, Feb. 1981, Vol. ASSP-29, pp. 84

[12] M. Puckette, T. Apel, “Real-Time Audio Analysis Tools for Pd and MSP”, ICMC

Proceedings, 1998, pp. 109

[13] J. Chowning, "The Synthesis of Complex Audio Spectra by Means of Frequency

Modulation", JAES, 1973, Vol. 21, pp. 526

[14] T. Tolonen, V. Välimäki, M. Karjalainen, “Evaluation of Modern Sound Synthesis

Methods”, Mar. 1998, ISBN 951-2240122

[15] A. Huovilainen, V. Välimäki, “New Approaches to Digital Subtractive Synthesis”,

ICMC Proceedings, 2005, pp. 399

[16] P. Schoffhauzer, “Synthesis of Bandlimited Analog Waveforms Using Frequency

Modulation”

[17] O. Niemitalo, “Polynomial Interpolators for High-Quality Resampling of Oversampled

Audio”, http://www.yehar.com/dsp/deip.pdf

[18] L. de Soras, “The Quest for the Perfect Resampler”, http://ldesoras.free.fr

Recommended Additional Reading and Links

1. C. Roads, “The Computer Music Tutorial”, 1996, ISBN 978-0-262-68082-0.

2. P.R. Cook, “Real Sound Synthesis for Interactive Applications”, 2002,

ISBN 978-1568811680

3. J.O. Smith’s Homepage, http://ccrma.stanford.edu/~jos/

4. M. Puckette’s Book Project, http://crca.ucsd.edu/~msp/techniques/latest/book-html

5. E. Weisstein’s World of Mathematics, http://mathworld.wolfram.com

6. GSL (GNU Scientific Library), http://www.gnu.org/software/gsl

7. No Matlab? Go here: http://www.scilab.org

