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Preface 
 

This online book presents advanced techniques for digital sound generation in electronic 

musical instruments with focus on the discussion and realization of popular building blocks 

using industrial grade algorithms. 

 

It has been written to serve as a reference for synthesizer development as well as to support 

university level courses on audio signal processing and computer music. 

 

The reader is assumed to be familiar with the basics of sound synthesis and signal theory. 

While a graphical time-frequency viewpoint based on convolution and sampling is 

emphasized to explain the foundations, analysis and implementation occasionally involve 

higher mathematics or technical computing tools. 

 

Happy reading! 
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1 Main Oscillators 

1.1 Generic Oscillator and Definitions 

 

Many digital oscillators share a generic topology: A phase accumulator generates a simple 

sawtooth with frequency and phase control, a frequency dependent memoryless function maps 

it to the desired shape, and an optional postfilter tailors the high frequency spectrum (Fig.1). 

 

 
Fig. 1: Generic Digital Oscillator Topology 

 

 

fo  = Fundamental Frequency 

fs  = Sample Rate (Default: 48 kHz. Double rate systems: 96 kHz.) 

T  = Sampling Interval = 1/fs  

fn   =  2Nfo/fs (Normalized Fundamental Frequency, ubiquitously used) 

φ   =  Phase shift in radians · N/π 

z
-1

  = Delay of one T. Output changes in discrete time steps.  

wrap(x)  =  x-2N if x ≥ N, x+2N if x < -N, x otherwise, repeat until the result is 

within [-N, N) (Default: N = 1) 

Important: Wrap(x) is inherent to the addition of integer data types in 

processors. No further operations are required if the two’s complement 

wrap-around is exploited by setting N to 2
(word size of data type in bits - 1)

. 

y(x)  = Full cycle of a mapper function. Examples: Sine, wavetables selected 

according to f, polynomial y(x) with coefficients c(f). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Signals in the Generic Oscillator for y = sin(πx/N), φ = -N, no Postfilter 

 

All signals are shown from a macroscopic perspective. Actually, they are number sequences 

changing in discrete time steps of the sampling interval T. In the next section we are going to 

discuss what difference that makes. 
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1.2 Analog versus Digital 

 

Unlike analog circuitry, digital oscillators are discrete time systems and therefore have a 

spectrum periodic in the sample rate fs. It is found by viewing the output as a sampled version 

of a continuous time signal, whose two-sided spectrum is superimposed at integer multiples of 

fs by the sampling process. A component at fo in the continuous signal leads to additional ones 

at |Nfs ±  fo| with N integer in the oscillator output. If these artefacts fall into the audio band, 

aliasing occurs that is generally not removable and perceived as unwanted tones. Fig. 3 shows 

a continuous time sawtooth and its discrete time representation including aliasing, whose 

psychoacoustical relevance will be discussed on the basis of selected components a-d.  

 
Fig. 3: Continuous Sawtooth with fo = 5 kHz sampled at fs = 48 kHz 

 

In practice, some aliasing is tolerable due to negligible signal power and auditory masking: In 

the presence of a strong tone, higher pitched weak tones are inaudible. For lower pitched 

tones, this effect diminishes rapidly and becomes negligible at intervals larger than an octave 

(Fig. 4). A coarse analysis of the sampled sawtooth from an auditory perspective yields: 

 

a) Aliased 9
th

 harmonic of the original: fs - 9fo = 3 kHz. Audible. 

b) Aliased 7
th

 harmonic of the original: fs - 7fo = 13 kHz. Partially masked by the 2
nd

 

harmonic of the original. Human pitch perception is imprecise at the top of the audio 

band, so this component has a chance to pass as “general highs”. Your ears decide. 

c) Aliased 5
th

 harmonic of the original: fs - 5fo = 23 kHz. Inaudible. 

d) Aliased 19
th

 harmonic of the original: 2fs - 19fo = 1 kHz. Audible. An ad-hoc 

transposition of Fig. 4 suggests that this component should be at least 80 dB down 

relative to the original to become inaudible. 

 

Conclusion: Spectral components of the continuous original that are close to integer multiples 

of fs will lead to audible and objectionable low frequency aliasing when the signal is sampled. 

The effect is most distinct for aliased components falling below the fundamental frequency fo. 
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Fig. 4: Auditory Threshold in the Presence of a Narrow Band Signal at 1 kHz 

Ref.: E. Zwicker, R. Feldtkeller: Das Ohr als Nachrichtenempfänger. (1967) 

 

Practical experience shows that a synthesizer should be able to generate tuned sounds with a 

fundamental up to 4-5 kHz at excellent quality, whereas higher frequency signals are mainly 

used as less critical modulators or sources of harmonics. Summarizing the foregoing we can 

state an empirical design rule for a continuous time prototype signal (see also Fig. 5): 

 

• Desired spectrum up to 20 kHz. 

• Roll-off as steep as possible within given constraints. 

• Below -80 dB at fs – 2 kHz 

• Below -85 to -90 dB at fs – 1 kHz 

• Roll-off from fs – 1 kHz to infinity by at least -20 dB/decade (≈ 6 dB/octave)  

 

 

 
Fig. 5: Spectrum of a continuous time prototype signal and its discrete time representation  

including 1
st
 and 2

nd
 order aliased components (red, orange) 
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1.3 Computation-Friendly Bandlimited Impulse 

 

Now that the requirements for a continuous time prototype signal are known, we choose the 

most elemental function that meets them and derive more complicated signals from it.  

 

A good starting point is the Dirac delta impulse with its flat spectrum up to infinity. When we 

send it through a filter with the frequency response of Fig. 5, the output spectrum is an exact 

copy of the response while the signal itself is the sought-after bandlimited impulse b(t). Since 

the computational effort for many algorithms based on b(t) is proportional to its length in 

sampling intervals T, it should be as short as possible. 

 

Theoretically, we could use a brickwall filter with infinite attenuation outside the audio band, 

but the resulting impulse would be the slowly decaying Sinc function. A popular solution is to 

limit the impulse in time by weighting it with a finite-length window function [11]: 

 

1. Take the impulse response of a brickwall filter with a cut-off frequency fc = 20 kHz 

and the sample rate fs:  ( ) ( )
( )sc

sc
sc

ff

ff
ffSinctg

/

/sin
/)(

π

π
π ==  

2. Choose a parametric window w(t,β) with low side lobes. 

3. Calculate b(t) =  w(t, β)g(t) and its spectrum. 

4. Repeat steps 1 to 3 tweaking β and fc until you get the desired stopband attenuation.  

5. Adjust fc slightly to maximize the attenuation around fs. 

6. Consider apodization (using a second window that widens the top of the main 

window) to tailor the transition band. 

7. (Optional: Resort to the Parks-McClellan algorithm for utmost performance.) 

 

Examples for lengths 4T and 10T with T = 1/fs and fs = 48 kHz using a Kaiser window are 

given in Fig. 6-8. Refer to appendix B1 for MATLAB code. 

 

 
 

Fig. 6: Bandlimited Impulse (Length = 4T, fs = 48 kHz, fc = 15 kHz, normalized) 

Main Window: Kaiser (β = 8.3), Apodizing Window: 1- 0.5·Kaiser (β = 0.5) 

 

The signal shown in Fig. 6 is suitable for virtual analog oscillators where compactness is 

crucial. Since not the impulse itself but its time integral with less high frequency content is 

actually used, the requirements for stopband attenuation are reduced. 
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We have to equalize the rounded passband edges to avoid a dull sound. A postfilter or 

preemphasis works best if the drop does not exceed 10 dB at 20 kHz, however, this is not 

overly critical. We might conservatively lower fc in the 4-sample impulse to further reduce 

susceptibility to aliasing and accept stronger filter action. 

 

 

 
 

Fig. 7: Bandlimited Impulse (Length = 10T, fs = 48 kHz, fc = 20 kHz, normalized) 

Main Window: Kaiser (β = 9), no Apodization 

 

 

 
 

Fig. 8: Bandlimited Impulse (Length = 10T, fs = 48 kHz, fc = 18.3 kHz, normalized) 

Main Window: Kaiser (β = 9), Apodizing Window: 1- 0.9·Kaiser (β = 0.7) 

 

A comparison of Fig.7 and 8 shows the effect of apodization. Higher attenuation at the 

beginning of the stop band at the expense of a slower roll-off results in a spectral profile 

which is especially suitable for sample-based oscillators. 

 

So far, we looked at continuous time impulses. As they are hard to calculate and polynomial 

approximations lead to a large number of terms, it seems favourable to tabulate them. A single 

table look-up is very attractive compared to interpolation-based techniques with their typically 
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3 to 5 times higher operations count and 2 to 3 times longer processing time on contemporary 

computing platforms. However, this approach is often deemed impractical, which is true for 

systems intended to process arbitrary audio signals. But, how does it perform under the 

specific requirements for oscillators in musical instruments? 

 

First, we look at the spectral difference between a continuous signal and its tabulated 

representation assuming that a table read is performed by truncating or rounding a continuous 

time pointer to form an integer index. N denotes the number of table entries per sampling 

interval T. 

 

 
Fig. 9: Spectral consequences of converting a continuous signal to a table intended for 

nearest neighbor look-up, N = 4 table entries per sampling interval T   

 

Reading the table at a certain rate fr in a digital oscillator corresponds to sampling the signal 

g3(t) at fr, hence spectral components around integer multiples of fr are fold down into the 

audio band. In the next step, we calculate the relative amount of aliasing as a root mean 

square ratio γ for a component of the frequency fo in the continuous non-tabulated original 

under the condition fr ≈ fs. 

Sampling at Nfs 

t 

g1(t) 

f 

|G1(f)| 

Time Domain Frequency Domain 

k

g2[kτ] 

f 
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t f 

|G3(f)| g3(t) 
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τ = 1/(Nfs) 

Multiply by |Sinc(πfτ)| 

Nfs 2Nfs 0 -Nfs -2Nfs 

Nfs 0 fs 
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A direct evaluation using πfoτ << 1 as required in any practical application yields for each of 

the two components aliased down from kNfs: 

 

[ ]( )
( )

[ ]( )
[ ]

( )
[ ] s

o

os

o

os

os

o

os

s
kNf

f

fkNf
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fkNfSinc
≈

±
=

±

±
≈

±
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πτ

τπ
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τπ

πτ
γ

sinsin
   

 

Aliased components can be assumed to have non-coincidental frequencies. Therefore, we sum 

up their power to get an upper bound for the total amount: 
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o

k s

o

o

RMS

Nf

f

Nf

f

kNf

f

f

aliasedG 8.1

3
2

|)(G| 1

2

3

3
≈⋅=




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
≤= ∑

∞

=

π
γ     (Eq. 1) 

 

Eq. 1 paves the way to determine the minimum required size of a look-up-table from the 

spectrum of the non-tabulated original signal. Although we stated fr ≈ fs, it’s not hard to see 

that it also provides a safe estimate for fr > fs. In case of fr < fs, the components around kNfs 

may be aliased down multiple times resulting in a worst case increase of 3 dB for doubling the 

ratio fs/fr. In practice, this is rarely important, because aliased components arising from 

undersampling of the base band will almost always dominate. 

 

Summary: Aliasing from reading tabulated signals without interpolation affects the entire 

audio band. It should be kept below -85 to -90 dB in musical instruments according to Fig. 4. 

The amount generated by a spectral component of the original signal is proportional to its 

frequency and amplitude. 

 

Example 1:  Professional sample rate converter. 100 dB SNR for any signal up to 20 kHz, 

M = 100 filter taps. Table size = MN = 1.8Mfo/(γfs) = 7500000, impractical. 

Example 2: Sample-based oscillator. 97 dB SNR for an original component at 1 kHz and 

85 dB for one at 4 kHz. Components at higher frequencies have lower levels in 

tuned sounds while noisy sounds are less critical with respect to perceived 

aliasing. When the sampled signal gets weaker, the aliased part proportionally 

decreases (in contrary to the constant noise floor of a converter or linear audio 

circuitry). Impulse length = 10T. Table size ≈ 26500, can be halved exploiting 

symmetry, fits into a CPU cache or the internal memory of a low-cost DSP.  

 

Now that we know how to create bandlimited impulses and store them adequately, we are 

finally ready to design some oscillators! 

 

1.4 Sample-Based Oscillator 

 

This oscillator class works by playing a frequency-transposed version of a sampled sound. It’s 

still the most common technique to emulate genuine musical instruments in a synthesizer. A 

big plus is the precise reproduction of any audio snapshot; major drawbacks are a repetitive 

character and the inability to inherently produce natural transitions. 

 

The principles of work are straightforward: Consider a signal of frequency fo and duration to 

in the original data that has been sampled at fs corresponding to an interval T = 1/fs. In the 

oscillator, the data is reconstructed, resampled at an interval Tnew = T/2, and played back at fs. 

As a result, the duration increases to 2to while the number of cycles remains the same. Thus, 

the frequency of this time-stretched signal has changed to fo/2. Fig. 10 depicts the procedure 

for an arbitrary transposition factor α = fnew/fo.  
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Fig. 10: Down Transposition in a Sample-Based Oscillator  

including Aliasing from Non-ideal Filtering 
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Fig. 10 allows us to analyze the limitations and requirements of a sample-based oscillator. 

 

First, we have a look at down transposition (α < 1): 

If the filtered signal does not contain any significant components above fs – fo, there will be 

no audible aliasing in the transposed signal. The worst case occurs for α ≈ 1 where the 

requirements become the same as for the bandlimited impulse. Thus, the spectral response of 

any of the impulses designed in section 1.3 will fit our needs. This is important as filtering 

will be achieved in the oscillator by convolving such an impulse with the original signal, 

which corresponds to multiplying the spectrum of the original signal with the impulse 

spectrum. Another point is that the original spectrum usually gets limited to 20 kHz in the 

recording process. Since we expect a minimum bandwith of 15 kHz for high quality audio,  

α must be at least 0.75. 

 

For up transposition (α > 1), the situation is more complicated (Fig. 11): 

At fs/α < 2fo, aliasing is inevitable with a computational-friendly constant length impulse,  

but transposition may still move it out of the audio band. The limiting condition becomes  

fs – αfo > 20 kHz, restricting α to below 1.4 for fo < 20 kHz and fs = 48 kHz. 

 

 
Fig. 11: Aliasing in Up Transposition 

 

In practice, some aliasing is tolerated as it enters the audio band at the top and subsides with 

increasing α. In addition, tuned sounds tend to have low energy at high frequencies. However, 

aliasing that falls below the fundamental (max. 4 kHz) quickly becomes objectionable, which 

is the case for fs/α – fo < 4 kHz. For fo = 20 kHz and fs = 48 kHz, a range of α = 1.4 to 2 

results. (Higher factors are accessible easiest by holding near-ideally lowpass filtered and up 

transposed versions of the original audio data in memory [18].) At last, the filter in the first 

step must have enough attenuation not to compromise quality taking the spectral roll-off of 

tuned sounds into account. Example: For fs = 48 kHz and α = 1.4, an original component at 

13.7 kHz is filtered at 34.3 kHz and aliased to 0 kHz in the transposed signal. This component 

can safely be estimated at least 20 dB down relative to the fundamental in the original signal, 

hence the filter specifications are relaxed towards higher frequencies. The spectral profile in 

Fig. 8 has proven to perform very well in musical applications. 

 

The following part deals with the implementation of the oscillator. Interestingly, the steps in 

Fig. 10 can be executed all at once using a bandlimited impulse! A non-interpolated table-

based impulse requires about 20 kWords of memory and provides optimum speed. If the 

hardware runs out of fast memory, consider a linearly interpolated table (≈ 500 elements) at 

the expense of roughly doubling the operations count [18]. In case both sample look-ups and 

memory are costly, polynomial interpolation [17] and Farrow filters are viable alternatives. 

 

The oscillator works as shown in Fig. 12: 

Filtering is accomplished by convolving a bandlimited impulse with the sampled original 

data. The resulting continuous function is then evaluated at the resampling points. Luckily, 

there’s no need to leave the discrete time domain as the above procedure is equivalent to 

sliding the impulse over the original signal and calculating a sum of products at these points. 

|S3(f)| 

0 fo fs/α 

 

f 
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Fig. 12: Sliding Window Process of a Sample-Based Oscillator 

 

 

To generate the output of the oscillator, we just advance the impulse in intervals αT and 

evaluate the sum of products. In the actual algorithm, the bandlimited impulse of Fig. 8 is read 

from a table. Hence, we need to calculate its minimum size using Eq. 1. If we aim to keep 

table-induced aliasing below -85 dB for a component at 4 kHz in the original data, we obtain: 

 

N = 10·1.8·4000/(48000·5.6·10
-5

) = 26786 

 

For the oscillator algorithm to be efficient, the table must have 2
M

 entries per sampling 

interval. Therefore, we relax the requirements somewhat and choose N = 10·2048 = 20480 

which results in a noise level of -83 dB @ 4 kHz and -95 dB @ 1 kHz relative to the desired 

signal. Because the impulse is symmetrical, only 10240 entries have to be stored. 

k 

soriginal[kT] 

t 

*

Bandlimited Impulse 

(symmetrical) 

The sum of the weighted impulses at this point 

equals the filtered signal value s2(t) here.   

t 

The same result is obtained by summing the products shown.  

multiply 
multiply 

multiply 
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(s2[t]) 

(s2[t]) 

T 
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In the aforementioned calculation, Eq. 1 has been applied to the spectral product of the 

original sampled data and the tabulated bandlimited impulse. Fig. 13 justifies this approach 

provided that the number of table entries N per sampling interval is integer. 

 

 
Fig. 13: Table-Induced Aliasing in the Sample Transposition Process 
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One aspect not yet addressed is the high frequency attenuation of the bandlimited impulse 

whose spectrum weights the original sampled data in the filtering process. Since that happens 

before resampling, the transposition ratio has no influence. Applying a linear-phase FIR 

prefilter to the sampled data when it is loaded into memory works well and avoids additional 

runtime processing. An example design for sampling at 48 kHz combines the normalized 

impulse of Fig. 8 with the prefilter below to get a mere ±0.05 dB gain deviation and 3.09 dB 

overall gain. Refer to appendix B2 for Matlab code based on Parks-McClellan optimization.  

 

∑
=

+=
16

0

][][
n

n nkxcky  

c0 = c16 = 0.0028 

c1 = c15 = -0.0119 

c2 = c14 = 0.0322 

c3 = c13 = -0.0709 

c4 = c12 = 0.1375 

c5 = c11 = -0.2544 

c6 = c10 = 0.4384 

c7 = c9 = -0.6334 

c8 = 1.7224 

(Prefilter) 

 

 

 
         

 Fig. 14: Magnitude Response of the Combined Design “Fig. 8 and Prefilter” 

 

We finish the section presenting the sliding window algorithm as a C snippet, which also 

justifies the decision to restrict the number of table entries per interval to a power of two. 

Useful modifications would be: 64-bit integers to support long samples, table interleaving in 

order to read from consecutive memory locations to improve caching on PC architectures. 

 
float blimp[10*2048];            // tabulated bandlimited impulse acc. to Fig. 8  

float samples[length];            // prefiltered original audio sample 

unsigned int ptr, ratio;            // sample pointer * 2048, transpose ratio (2048 � 1:1) 

unsigned int index, offset ; 

 

//*** calculate interpolated output value and advance in time*** 

index = ptr >> 11; offset  = 2047 + (index << 11) - ptr;     // much faster than using ptr/2048 and ptr%2048 

out = 0.0f; 

for (i = 0; i++; i < 10) { 

 out += blimp[offset]*samples[index]; 

 offset += 2048; index ++; } 

ptr += ratio;       

if (ptr > loopend) {ptr -= looplength;}          // (optional loop control) 
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1.5 Virtual Analog (VA) Oscillators 

 

VA oscillators are intended to emulate the analog originals with focus on classic waveforms 

and excellent modulation capabilities. The designs presented here generate high fidelity 

signals in both frequency and time domain using an efficient algorithm that furthermore 

supports easy integration of FM and hard synchronization. 

 

We start with the bandlimited impulse train (BLIT) as described in [1]. The following designs 

are significant improvements as they do not suffer from any of the commonly encountered 

problems like frequency dependent gain, bias or phase shift. 

 

The first signal to be synthesized is a simple sawtooth, which can be obtained by integrating 

the sum of an impulse train and a constant (Fig. 15). 

 

 

 
Fig. 15: Simple Sawtooth by Integrating an Ideal Impulse Train  

 

 

Earlier insights from Fig. 3 suggest using bandlimited impulses to prevent aliasing when the 

signal is translated to discrete time as it is the case in every digital oscillator (Fig. 16). If the 

impulse has a flat spectrum over the audio band, no difference is perceived. An eventual high 

frequency drop can be compensated by applying a filter to the output of the oscillator. 

 

 

 
Fig. 16: Bandlimited Sawtooth by Integrating a Bandlimited Impulse Train 

 

 

In a practical implementation, an open integrator would be very undesirable due to its 

frequency response and numerical properties. A nice trick similar to the BLEP approach [5] 

gets rid of it (Fig. 17): 

 

Integrate the difference of a bandlimited and an ideal impulse train. This removes the constant 

part and leads to a fixed length signal segment ready for tabulation. At runtime, read out the 

segment and add a simple sawtooth. 

t t 

s2(t) s1(t) 

Integrate 
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t 
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Fig. 17: Bandlimited Sawtooth Generation without Integration 

 

According to Fig. 17, the signal s6 is a train of fixed length segments separated by zero-valued 

regions whose length depends on the fundamental frequency. An upper limit for the 

fundamental is imposed by the length of the bandlimited impulse, being shortest in the design 

of Fig. 6. In order to create the segment, we calculate the cumulative sum of s5. This simple 

approximation to continuous time integration produces a negligible high frequency gain for 

practical table sizes. 

 

t 

s5(t) = s3(t) – s1(t) 
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t 
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_ 

t 

s4(t) 

s1(t) 

+ 

t 

s3(t) 

+ 

_ 

t 

Constant length segment! Calculated once from s5(t) and stored in a table. 

s6(t) = s4(t) – s2(t) 

 

0 

 

Runtime Operations: 

 

1. Compute s2(t) and s6(t) using the generic oscillator structure of Fig. 1 

2. Compute the output s4(t) =  s2(t) + s6(t) 
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Now we are up to determine the appropriate table size for the segment. The output signal only 

partially consists of tabulated values. That’s why Eq. 1 cannot be applied directly, but a 

conservative guess can be made treating the whole signal as a table. 

 

Since a sawtooth has a 1/f spectrum and aliasing is proportional to f, every harmonic 

contributes to the same amount. The spacing of the harmonics is preserved when they are 

aliased, thus only one component can fall more than octave below fo and we apply Eq.1 to it. 

Components above fo remain inaudible because they are masked. In order to keep aliasing 

below -85 dB and assuming a fundamental frequency fo = 4 kHz and a sample rate fs = 48 kHz 

the number of table entries becomes N ≈ 2700 per sampling interval T. The entire segment 

spans 4T, due to symmetry we just have to store N ≈ 5400 for one half. 

 

The bandlimited sawtooth inherits the spectral droop from the bandlimited impulse. To 

retrieve the brilliance of the analog original, we insert a postfilter, which should be as simple 

as possible because it consumes processing time. A suitable IIR filter is found readily via cut 

and try: 

 

( )
135.065.0

1
−+

=
z

zH pf  

 

Figures 18 to 20 show the oscillator’s spectral purity and temporal fidelity. We happily notice 

how little aliasing falls below the fundamental when the signal is discretized in time. Refer to 

appendix B3 for the Matlab code used to create the segment. 

 

 

 
 

Fig. 18: Bandlimited Sawtooth, fo = 1 kHz  

(Cross: No postfilter. Dot: With postfilter. Line: Theoretical sawtooth spectral envelope.)  
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Fig. 19: Bandlimited Sawtooth, fo = 4 kHz  

 

 
 

Fig. 20: Bandlimited Sawtooth, fo = 12 kHz 

 

 

 
 

Fig. 21: Segment Function 
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The actual sawtooth oscillator is derived from the generic oscillator in Fig. 1. It employs a 

constant 90° phase shift to centre the segment at the zero crossing. Fig. 22 and 23 depict the 

block diagram and associated signals. Many synthesizers mix several oscillator signals 

together. In this case, the postfilter is required only once. It’s a good idea to place it after a 

ring modulator or a similar nonlinearity to lower their tendency to produce aliasing. 

 

 
Fig. 22: Bandlimited Sawtooth Oscillator 

 

 

 
Fig. 23: Signals in the Bandlimited Sawtooth Oscillator 

 

Signal A completes a cycle within To ranging through 2N. As the half segment has a length of 

2T, we obtain α = 4NT/To = fo·[4N/fs]. The index i to read the segment function from a table 

containing M entries per half becomes i = MA/α = A·[1/fo]· [Mfs/(4N)]. The brackets show 

which products are constant and which ones must be computed during runtime. We observe 

that the fundamental frequency fo is required in its reciprocal form too. Since synthesizers 

apply an exponential characteristic to frequency control and there’s no need to update at audio 

rate (FM acts on the phase modulation input φ), the additional effort is not obstructive (see 

appendix C2). 

 

In case the hardware does not provide enough memory, the half segment can be approximated 

by a polynomial (Fig. 24). The high order is typical for non-periodic bandlimited functions. 

wrap 

wrap 

fn 

φ y(x) 

D

A

z
-1

 N 

Hpf(z) 

wrap 

y(x) = -fseg[sym](A/α)  ; |A| < α 

  0   ; else  

C 

B 

T0 

k 

B 

A

C 

D
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-N 

α 



Digital Sound Generation  Beat Frei, 10-07-19, ICST 20/85 

 ∑
=

=
7

0

seg[half]  (x)f-
n

n

n xc  

c0 = 0.99986 

c1 = -2.97566 

c2 = -0.23930 

c3 = 7.83529 

c4 = -3.25094 

c5 = -11.51283 

c6 = 13.50376 

c7 = -4.36023 

(Polynomial Approximation) 

 

 
Fig. 24: Polynomial Approximation of the Half Segment 

 

 

Although the same segment could be used to generate a bandlimited square wave, pulse width 

modulation (PWM) is often desirable. If we sum the output of two sawtooth oscillators 

running in opposite direction, we get a variable width pulse wave that inherits zero bias and 

spectral purity (Fig. 25). The width is proportional to an offset φpw added to the phase 

modulation input of one oscillator. A square wave is obtained for φpw = N/2 (90°).  

 

 
Fig. 25: Variable Width Bandlimited Pulse Generation 

 

 

A triangle wave is synthesized as the time integral of a square wave by combining the ideas of 

Fig. 17 and Fig. 25. See Fig. 26 for details. The segment in s10 is calculated as the cumulative 

sum of the sawtooth oscillator segment and then tabulated. 

T0 Trel 

k 
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Fig. 26: Bandlimited Triangle Generation 

 

As s8 is the time integral of s7, its amplitude is proportional to the fundamental period To.  

On the other hand, a segment of s9 has constant size and amplitude which results in constant 

amplitude and size of s10. To keep the amplitude of s12 independent of the fundamental 

frequency fo, we use a constant amplitude signal s8 and scale s10 inversely proportional to To. 

This is equivalent to weight it proportionally to fo. The constant β is found by matching the 

slopes of s8 and s10 at an arbitrary fo and may be condensed into the tabulated values. 

 

The weighted addition relaxes the accuracy requirements for the signal s10. Further 

examination reveals that the table size can be reduced to N ≈ 1000 for the whole segment. 

Unfortunately, we need two segments per full period and they overlap for To < 8T, hence a 

wide range triangle oscillator contains two segment generators (Fig. 27) making it as resource 

hungry as a pulse oscillator. Unlike most hardware synthesizers, which use dedicated constant 

resources for an oscillator, software synthesizers running on a general purpose computer 

consume processing cycles on demand. In this case, we should consider replacing the triangle 

with a sinusoidal oscillator for f > fs/8 to save a segment generator.

s9(t) 

t 

+ 

= 

t 

s11(t) = s7(t) + s9(t) 

 

t 

Integrate 

s10(t) 

= 
s12(t) = s8(t) + β·fo·s10(t) 

 

t 

+ 

Integrate 

Integrate 

Bandlimited Square  Bandlimited Triangle  

t 

t 

s7(t) s8(t) 

To 

4T 
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Fig. 27: Wide Range Bandlimited Triangle Oscillator 

 

 

 
 

Fig. 28: Signals in the Bandlimited Triangle Oscillator 

 

Analogous to the sawtooth oscillator, we obtain α = fo·[4N/fs]. The index to read the segment 

function from a table containing M entries per half becomes i = A·[1/fo]· [Mfs/(4N)]. 

wrap 

wrap φ y(x) 

F 

A

z
-1

 

N 

Hpf(z) 

wrap 

y(x) = ftri(x)   ; |x| < α 
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1.6 Noise Generation 

 

White noise for musical purposes can be synthesized efficiently by means of a linear 

congruential generator [2]. Modulo division is performed automatically as a wrap-around if 

the divisor matches the word size. 

 

For 32 bit integer data types:   x = (69069x + 1) mod 2
32

 

On 24 bit fixed point audio DSPs:  x = (12268885x + 1) mod 2
24

 

 

Pink noise with its -10dB/decade slope and constant power per octave is obtained by filtering 

white noise. A filter with 0.3 dB deviation from 0.00045fs to 0.45fs has been proposed by 

Robert Bristow-Johnson:  

 

( ) ( )( )( )
( )( )( )0.5356750.9479060.995728-z

 0.075684 0.833923-z 0.984436-z

−−

−
=

zz

z
zH  

 

Fig. 29: Pink Noise Filter 

 

This filter converts white noise uniformly distributed from -1 to 1 to non-uniformly 

distributed pink noise with RMS amplitude 1. As this implies both an overall gain of 4.77 dB 

and an increased crest factor, subsequent stages should be able to process peak values of at 

least 3 without excessive distortion. 
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1.7 Sinusoidal Oscillators 

 

There are many ways to generate a sine wave, the most efficient being 2
nd

 order closed-loop 

systems based on trigonometric identities or the z-transform of the discrete-time sinusoid 

(section 2.1). Despite their low computational demand when running free, obstructive 

calculations are mandatory for transient-less arbitrary modulation of both frequency and 

phase. On the other hand, fast sinusoidal oscillators with immediate linear phase control are 

readily realized with the generic oscillator structure of section 1.1. 

 

If the hardware supports fast integer arithmetic and memory access, a lookup table is usually 

the preferred choice to convert the simple sawtooth to a sinusoidal. About 500 table entries 

are sufficient with linear interpolation, nearest neighbour lookup is even faster at the cost of a 

larger table - about 30000 entries for a high-quality full cycle. Furthermore, we should be 

aware of some advantages of integer arithmetic: Sums automatically wrap around on 

overflow, and a simple shift operation converts the phase accumulator to the table index. 

 

Polynomial approximations are a good alternative when multiplication is fast but memory 

access expensive. Although it’s often suggested that reduction theorems should be used to 

narrow the input range to π/2 or π/4, this is mainly an issue with truncated Taylor series. Since 

conditional instructions take more time than an additional product term evaluation on modern 

processors, we will stick to a polynomial that maps the whole circle and can be fed directly 

with the output of a simple sawtooth oscillator. Minimax or Chebyshev techniques spread the 

error evenly over the entire range outperforming Taylor series by several orders of magnitude 

in both time and spectral domain. It’s important to note that the error consists of harmonics 

rather than random noise: If we avoid discontinuities at the output when the input wraps from 

1 to -1 or vice versa, higher harmonics will decline quickly with increasing order and even an 

approximation with relatively large error may sound good as long as aliased harmonics 

remain inaudible. This idea is exploited in the designs of Fig. 30 to 34. 

 

 

 
 

Fig. 30: Map-Based Sinusoidal Oscillator 

 

 

 

 
 

Fig. 31: Signals in the Map-Based Sinusoidal Oscillator 

 

wrap 
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Fig. 32: sin(πx) ≈ -0.433645x
7
 + 2.428288x

5
 - 5.133625x

3
 + 3.138982x 

 

 

The function in Fig. 32 works well as a general purpose sine shaper for musical applications. 

All harmonics are masked and aliased components falling below a fundamental of 4 kHz are  

90 dB down for a sampling rate fs = 48 kHz. Fig. 33 and 34 show the performance of the next 

higher and lower order polynomial. For comparison, see the truncated Taylor series in Fig. 35. 

 

 

 

Fig. 33: sin(πx) ≈ 1.63190x
5
 - 4.71594x

3
 + 3.08404x 



Digital Sound Generation  Beat Frei, 10-07-19, ICST 26/85 

 

 

 

Fig. 34: sin(πx) ≈ 0.0636716x
9
- 0.5811243x

7
 + 2.5422065x

5
 - 5.1662729x

3
 + 3.1415191x 

 

 

 

Fig. 35: Truncated Taylor Series, sin(πx) ≈ (πx)
9
/9! - (πx)

7
/7! + (πx)

5
/5! - (πx)

3
/3! + πx 
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Approximations of the cosine within the range [-π, π] are: 

 

εmax [%] K2 K3 K4 K5 K6 P(x) ≈ cos(πx) 

6.3 -24 -39 -49 -53 -58 2.0124x
4
 - 4.0060x

2
 + 0.9339 

3.0 -32 -43 -42 -45 -47 2.4236x
4
 - 4.3650x

2
 + 0.9693 

0.25 -59 -54 -62 -69 -75 -0.8775x
6 

+ 3.7472x
4
 - 4.8648x

2
 + 0.9975 

0.004 -108 -94 -91 -96 -107 
0.17824x

8 
- 1.28739x

6 
+ 4.04196x

4
 –  

4.93273 x
2
 + 0.99996 

 

Fig. 36: Performance of Selected Sawtooth to Cosine Shaper Polynomials 

(Kn = A(nfo)/A(fo) in dB) 

 

 

Sometimes, a triangle is available. In this case, one product term can be saved since the 

approximation only needs to cover [-π/2, π/2]. 

 

 
Fig. 37: Mapped-Triangle Sinusoidal Oscillator 

 

 

 

εmax [%] K3 K5 K7 K9 K11 P(x) ≈ sin(πx/2) 

1.21 -38 -57 -70 -80 -91 1.5209x – 0.5090x
3
 

0.46 -49 -55 -57 -61 -64 1.5478x – 0.5520x
3
 

0.011 -91 -80 -91 -102 -117 1.57007x – 0.64089x
3 

+ 0.070726x
5 

0.007 -98 -84 -120 -98 -98 1.57031x – 0.64209x
3 

+ 0.071844x
5
 

0.00006 -147 -132 -126 -135 -153 
 1.5707908x - 0.6458911x

3
 + 0.0794309x

5
 - 

0.0043311x
7
 

 

Fig. 38: Performance of Selected Triangle to Sine Shaper Polynomials 

(Kn = A(nfo)/A(fo) in dB, K = 0 for n even) 

 

 

The output is a cosine wave. Hence, we could attach a saw-to-sine shaper after the wrapper 

(node A) to build a quadrature oscillator. 

 

wrap 

wrap φ P(x/N) 
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fn 
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1.8 Ring Modulation 

 

In the synthesis stage of musical instruments amplitude modulation at audio rates is usually 

accomplished in a ring modulator, which does nothing but multiply two input signals to form 

the output. Typical applications are the generation of disharmonic timbres, additional 

harmonics, and tuned noise. A multiplication in the time domain corresponds to a convolution 

of the spectra: If one input has a component at the frequency f1, the other one at f2, then the 

output will contain components at |f1±f2|. New frequencies are created, so we have to take care 

of aliasing and keep in mind that oscillator signals extend beyond the audio band (Fig. 18).  

Fig. 39 shows some signals for typical conditions at fs = 48 kHz with two components. 

 

Input 1:  Sine f1 = 1.1 kHz, A = 0.9 +  Sine fe1 = 23.1 kHz, A = 0.1 

Input 2:  Sine f2 = 5.5 kHz, A = 0.9 +  Sine fe2 = 22.0 kHz, A = 0.1 

 

 

Fig. 39: Signals in the Simple Ring Modulator 

An analysis yields: 

 

1. The desired components at f1±f2 = 4.4 and 6.6 kHz. 

2. Components from a strong desired low frequency signal and an out-of-band signal 

f1±fe2 = 23.1 and 20.9 kHz, f2±fe1 = 28.6 kHz (aliased to 19.4 kHz) and 16.5 kHz. Not 

objectionable or masked in practical cases. 

3. Components from two weak top- or out-of-band signals. fe1±fe2 = 45.1 kHz (aliased to 

2.9 kHz) and 1.1 kHz. Audible. Aliased components are especially problematic 

because they are neither masked nor do they fit into the harmonic context. 
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Conclusion: Audible aliasing mostly arises from two input components around fs/2. It’s a 

good idea to eliminate them in a filter with a zero at Nyquist before they get multiplied. 

 

The collateral high frequency attenuation is equalized by a filter after the multiplication. We 

should also insert a DC trap (s. Appendix C1) since multiplying signals with commensurate 

frequency components leads to a (usually small) constant bias that may disturb subsequent 

stages. (Fig. 40 and 41) 

 

 

 

Fig. 40: Spectra of the Enhanced Ring Modulator (at points A, B, C) 

 

 

 

 

Fig. 41: Enhanced Ring Modulator 

 

Input scaling by 0.5 prevents overflow at nodes A and B. In floating point systems, we may 

omit it and replace the factor 5/3 by 5/12. 
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1.9 FM Synthesis 

1.9.1 Principles 

Frequency modulation (FM) is a popular sound synthesis method introduced in [13]. It 

generates inherently bandlimited complex spectra with low computational effort. Most of 

today’s musical synthesizers feature some sort of FM, often modulating the phase instead of 

the frequency. Phase modulation (PM) is actually used in classic FM synthesizers; thus we 

stick to the term “FM synthesis” but name the modulation type correctly. We start by 

examining the general behaviour of a basic setup (Fig. 42). 

 

 

Fig. 42: Basic Phase Modulation Setup (as used in FM synthesis) 

 

Key formulae governing the system of Fig. 42 are: 

 

( )( ) =+++= cmmc tfmtfAtx ϕϕππ 2sin2sin)( ( ) ( )( )∑
∞

−∞=

+++
n

cmmcn ntnffmJA ϕϕπ2sin     

 

Discussion: 

 

1. Frequency components appear at |fc ± nfm| with n integer. For a harmonic output 

spectrum, the modulator frequency fm must be an integer multiple or submultiple of 

the carrier frequency fc.  

 

2. The magnitude of spectral components is determined by n-th order Bessel functions of 

the modulation index m: A larger m results in a richer harmonic content. For n > m, 

the harmonics will diminish rapidly effectively limiting the output spectrum (Fig. 43). 

With the Stirling formula for the factorial it can be shown that this function decreases 

slightly faster than exponentially with increasing n.  

 

3. Frequency components can appear twice with different magnitude and opposite phase 

causing characteristic holes in the spectrum. Signals with very high m tend to sound 

annoying due to the characteristic peak around mfm; values above 10 are rarely used. 

Furthermore, the harmonics do not evolve naturally when m is swept in order to create 

a dynamic spectrum. In this case it’s advisable to confine m to about 1.5 and use a 

more complex modulator or feedback. 

 

4. If φc = φm = 0, the output will be unbiased. This also holds for φm ≠ 0 if φm is the 

output of an additional modulator with φc = 0 and φm is either zero or satisfying the 

condition in this sentence. If φc = 0 for all oscillators in a setup, the output is unbiased. 

As this is often hard to fulfil in a variable synthesis chain, the frequency control input 

is rarely used for modulation to avoid detuning. A bias at the phase input only changes 

the spectrum and often goes unnoticed at all. 

fm 

φm 

m 

fc 
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Modulator Carrier Oscillator 

φc 
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Fig. 43: Magnitude of Bessel Functions of the First Kind 

 

There’s an asymptotic estimate valid for 0 < m < 1+n : 

n

n

m

n
mJ 




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


≈

2!

1
)(  

 

 

Fig. 44: Basic Setup Spectra (fm = fc = 2 kHz, φm = φc = 0) 
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Fig. 44 shows FM spectra for different values of m. Here we see the remarkably steep roll-off 

that substantially simplifies bandwidth control. A provision for adjusting the modulation 

index m according to the fundamental frequency suffices to keep an FM system alias-free. 

The frequency fmax at which the components are down by at least 80 dB relative to the main 

peak is bounded by: 

 

( ) mc fmff 3.12max ++<    ; m > 0.03   

( ) mc f
m

ff
5.0ln

3.9
max −<  ; 0.0002 < m < 0.03 

 

A severe disadvantage of the basic setup is the lack of highs. Three methods are commonly 

employed as a remedy:  

 

• Choosing  fm >> fc 

• Feedback 

• Modulating the modulator 

 

Fig. 45 depicts the result of the first approach with its characteristic large holes in the 

spectrum. This technique is often applied to create metallic timbres and short transients. 

 

 

 

Fig. 45: Basic Setup Spectra (fm = 7 kHz, fc =1 kHz, φm = φc = 0) 
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1.9.2 Feedback 

 

The spectral characteristics and control dynamics of the feedback method resemble those of 

subtractive synthesis. Hence, feedback pleasantly extends the sonic range of FM synthesis 

towards analog timbres. 

 

So far, we assumed the system to be time continuous. If we use the phase input as we did, the 

modulation paths are memoryless and the discrete time realization exactly equals the sampled 

continuous system. Therefore, we just have to take care for the continuous prototype not to 

contain spectral components that will cause audible fold-over. A discrete time feedback 

system however must have some memory in its loop and neglecting it will not provide a 

viable approximation beyond fs/10. That’s why it’s advisable to directly analyze a discrete 

time version (Fig. 46) that employs a sinusoidal oscillator from section 1.7 (e.g. Fig. 30). For 

further analysis, the phase input φ is normalized to 2π and the output amplitude to 1. 

 

 
Fig. 46: Discrete Time Oscillator with PM Feedback 

 

 

  Fig. 47: PM Feedback Spectra 
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Typical spectra are shown in Fig. 47. The harmonics grow smoothly without leaving holes 

when β is increased. Unfortunately, the richness of a sawtooth cannot be achieved as the 

system becomes unstable for β > 1. We also notice the fold-over for larger values of β. The 

spectral envelope for different values of β in Fig. 48 may assist in determining whether 

aliasing would become problematic with the intended amount of feedback. 

 

 

Fig. 48: PM Feedback Normalized Spectral Envelopes for different values of β 

 

The amplitudes in Fig. 48 are approximately (n > 1): ( ) ( )( ) 1325.048.13.0
−− −+≈

nn

n eA βββ  

 

A side effect of PM feedback is a frequency dependent output bias, roughly given for 

fo/fs < 0.1 and practical β by: 

  

( )
s

bias
f

f
x 0369.212.3 ββ +−≈  

 

Consequently, a DC trap (s. Appendix C1) is recommended at the summation point of the 

carrier oscillators if feedback is employed. 

 

In classical FM synthesizers, the instability at β >> 1 is exploited to create noise. It sounds 

nearly white except for some extra peaks related to the fundamental, which may be desired or 

not. 

 

Examination of the instability reveals that it starts with a high frequency parasitic oscillation 

peaking at fs/2. So why not reject those components in the feedback loop to extend the useful 

range of β and get a more brilliant sound? Not surprisingly we recycle the technique already 

known from the ring modulator. The resulting structure dates back to the early days of FM 

although it has rarely been mentioned in the literature. Recently, a variation based on an IIR 

low-pass filter has been proposed by Peter Schoffhauzer. (Fig. 49) 
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Fig. 49: Enhanced PM Feedback (Left: Traditional, Right: Schoffhauzer) 

 

 

 

 

Fig. 50: Comparison of PM Feedback Spectra (f0 = 450 Hz) 

 

 

Enhanced feedback results in a distinctly richer spectrum, but the traditional method 

introduces a peak around fs/3 that becomes more pronounced with increasing β. While it’s an 

amazing improvement over simple feedback in any FM system, we should refrain from 

emulating an analog sawtooth using this structure, lest we end up with an annoying peak that 

shines through in every sound. The Schoffhauzer method performs much better in this regard 

and a good VA sawtooth spectrum is obtained with a few additional tweaks. Refer to his 

paper for details [16]. Note the moved output tap in Fig. 49. 
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1.9.3 Complex Modulators 

 

Modulators with complex spectra are very rewarding and ubiquitous in FM synthesis. 

Complex spectra are obtained by modulating a modulator or using non-sinusoidal oscillators. 

The static spectrum of such a modulator should sound rather dull to avoid aliasing as the 

following calculations demonstrate. We consider a modulator signal that consists of a strong 

low frequency (Am1) and a weak high frequency (Am2) component. Furthermore, we introduce 

angular frequencies (ω = 2πf) for compact notation: 

 

( ) )sin()sin( 2211 tAtAtx mmmmm ωω +=    

 

The modulated carrier output becomes: 

 

( ) [ ]( ))sin()sin(sin 2211 tAtAmttx mmmmc ωωω ++=   

( ) ( ) ( ) ( ) ( ))sin(sin)sin(cos)sin(cos)sin(sin 22112211 tmAtmAttmAtmAttx mmmmcmmmmc ωωωωωω +++=

 

With mAm2 << 1 and 2
nd

 order Taylor approximations for sine and cosine: 
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Discussion: 

 

1. The main component is the carrier modulated by the strong signal. 

 

2. There are two weak copies of the main component, spectrally shifted by the weak 

signal’s frequency. If both main and weak components extend beyond the audio range, 

audible aliasing becomes likely. This problem is encountered for example when FM is 

applied to VA oscillators.  

 

3. Even weaker spectral copies of the main component occur shifted by multiples of the 

weak signal’s frequency (here we calculated only 2
nd

 order components). Despite their 

low amplitude, they are often more troublesome than those mentioned in (2), because 

aliasing may also crop up with a low frequency sinusoidal carrier. This is the main 

reason why dull modulators are preferable. 

 

4. The output is unbiased if all oscillators are in phase and unbiased.  

 

See Fig. 51 for an example. 
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Fig. 51: PM Spectrum, Modulator: Sum of Sines (1 kHz, m = 1) + (20 kHz, m = 0.1) 

 

To illustrate the combination of the foregoing methods, we aim at replacing a FM feedback 

pair for a VA sawtooth oscillator (Fig. 52). Let’s see what we get in a straightforward 

approach: A clean spectrum with an interesting grumpy character caused by the shape 

becoming exponential at low frequencies similar to some analog counterparts (Fig. 53). We 

may easily add extensions to morph from a sawtooth to a sinusoid and for phase modulation. 

The downside: It sounds less brilliant for very low fundamentals (enhanced feedback will 

improve). Due to feedback, the system lacks immediate phase control; frequency control is 

somewhat cumbersome too. The simplistic phase compensation is imperfect and leaves the 

output slightly biased; we may use a look-up table or omit it in favour of a DC trap. All in all, 

this oscillator is only recommended if there is already a given classic FM infrastructure. 

 

 

Fig. 52: PM Bandlimited Sawtooth Oscillator 
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Fig. 53: Spectrum and Shape of the PM Bandlimited Sawtooth Oscillator (fo = 650 Hz) 

 

In a second example, we focus on the triangle which is likely to be modelled more accurately 

due to its sparse spectrum. Such a replacement would be very beneficial since the VA triangle 

oscillator is computationally intensive. In addition, we come across the idea of inserting a 

polynomial into the feedback path. An even order type is chosen as the triangle spectrum 

contains only odd harmonics. 

 

Fig. 54: PM Bandlimited Triangle Oscillator 

 

 

Fig. 55: Spectrum and Shape of the PM Bandlimited Triangle Oscillator (fo = 400 Hz) 
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In the triangle oscillator, spectral accuracy is not limited by the maximum amount of 

feedback. Instead, excessive feedback will evoke an unnatural boost of the lower harmonics. 

To summarize the reasonable effort FM approach to classic analog waveforms, one can state 

that a clean and well-controlled spectrum is obtained. The lack of immediate phase control as 

well as weak highs at very low fundamentals may be obstructive in some cases. 

We finish the section tackling the challenge of adding FM to VA oscillators. Already known 

is that a modulator should have as little high frequency content as possible to avoid aliasing. 

Does this also apply to the carrier? To analyze it, we assume without loss of generality an 

unbiased carrier decomposed into a sine-based Fourier series: 

( ) ∑
∞

=

+=
1

)sin(
n

ncnc tnbtx ϕω  

A phase shift ∆φ at the modulation input just shifts the time pointer of the waveform cycle by 

∆t = T∆φ/(2π) = ∆φ/ωc. Hence, the modulated carrier becomes: 
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Assuming further a modulator ∆φ = m·sin(ωmt) we obtain: 
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(mod)  

The Bessel function Jk(nm) starts to diminish for k > nm. Given nmax as the order of the 

highest significant carrier harmonic, phase modulation causes a bandwidth increase roughly 

proportional to nmaxmfm. To get rid of the frequency dependence, which may easily cause 

aliasing, we make the effective m inversely proportional to fm by weighting the modulator 

spectrum. The simplest way would be to integrate the modulating signal. This is feasible at no 

cost using the frequency instead of the phase control input at the carrier oscillator, because 

phase is the time integral of frequency. However, any bias in the modulator would detune the 

carrier oscillator and the modulation depth becomes excessively large for low fundamentals. 

In some systems, the modulator is unbiased by design and true frequency modulation may be 

adequate. Otherwise, the setup in Fig. 56 is recommended: The phase input is fed by a leaky 

integrator with an additional zero at fs/2. Exact values are application specific. 

 

Fig. 56: Wideband Oscillator PM Setup 

Phases often can be matched only for a single spectral component which results in a biased 

output. The bias is usually lowest when the fundamentals are in phase, implying a 90 degree 

shift between the oscillators for an integrated modulator signal. Since VA oscillators are 

expected to be biased anyway due to other processes like hard synchronization, it is good 

practice to insert a DC trap between the carrier oscillator output and subsequent stages. 

fm 

φm 
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Even if an oscillator lacks immediate phase control, it’s still possible to add FM capabilities. 

As phase is the time integral of frequency, we may differentiate the modulator signal and add 

it to the frequency input (Fig. 57). 

We should be aware that the discrete time difference is an approximation to the continuous 

time derivative. Similarly, the cumulative sum of the frequency input, which represents the 

phase in an accumulator-based oscillator, is not equal to the continuous time integral. 

Fortunately, these deviations exactly cancel. 

 

 

 

Fig. 57: FM Extension for Oscillators without Phase Input 
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1.10  Wavetable Oscillator 

The wavetable oscillator is a standard block to generate arbitrary static harmonic spectra. 

Dynamic ones can be realized by crossfading the output of two units. It works like a sample-

based oscillator that repeats a fixed length segment ad infinitum. Only low computational 

resources are required because we may design it to sound good with linear interpolation.  

 

Fig. 58: Wavetable Oscillator Working Principle (N = 16) 

The tabulated values x[n] and the output spectrum X[k] are directly related by the Discrete 

Fourier Transform (DFT): 
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When constructing a wavetable from the spectrum, a real valued signal must be ensured by 

satisfying the condition X[k] = X
*
[N-k] for every k. We can deliberately set the spectral 

components from k = 0 to N/2, whereby X[0] and X[N/2] should always be zero. The 

fundamental fo of the output signal is given by the sample rate fs, the table size N, and the 

fraction α of a table increment at which the output pointer proceeds. X[k] maps to the non-

aliased part of the output spectrum S(f) as follows: 

S(αfsk/N) = X[k] for 0 ≤ k < N/2 and k integer, 0 otherwise. 

The special case α = 1 leads to the natural fundamental fo(nat) = fs/N and harmonics at kfo(nat). 

Thus, α can also be interpreted as a transposition factor relative to fo(nat). If fo falls below fo(nat), 

the sound starts missing highs, that’s why the table should not be too short; a popular choice 

is N = 512. 

Sometimes, the above formulae have to be evaluated quickly in large quantities. In this case, 

the Fast Fourier Transform (FFT) comes in handy and there are tricks that explore symmetry 

to speed up things further. These involve packing two real signals into a complex one, or two 

spectra into lower and upper halves. The reader may refer to DSP books for details. 

Example sources for wavetables are: 

• Editors 

• Automatic extraction from samples. A purely time domain based approach is as 

possible [3] as spectral analysis and reordering [4].   

• States of a slow system that is manipulated in real-time (→ Scanned Synthesis). 

• Neural networks, cellular automata, whatever comes to our mind. 

As long as the source delivers a natural spectrum with most power concentrated at lower 

harmonics, aliasing is normally not an issue. One word on the phase relations of harmonics: 

pointer wrap around 

output pointer 

output value 
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Although often disregarded, they are important. Wavetables acquire a metallic-diffuse 

coloration which is audible up to a fundamental of several 100 Hz if the phases are spread 

randomly. We mentioned that linear interpolation is adequate to read out the table. How is 

that possible with a technique that performs rather poorly in sample-based oscillators? Let’s 

start by showing the equivalence of linear interpolation to the convolution of the tabulated 

signal with a triangular window followed by resampling at the read location (Fig. 59). 

 

Fig. 59: Equivalence of Linear Interpolation and Convolution with a Triangular Window 

 

This situation is exactly the same as with the sample-based oscillator except that the filter 

function is a triangular window instead of a bandlimited impulse (Fig. 60). It is of great 

advantage that we don’t need to tabulate this window since the interpolated value can be 

calculated quickly without significant error. On the other side, the filter is far from perfect  

at higher frequencies. The amount of aliasing is derived with help of Fig. 60 and the fact that 

convolution with a triangular window in the time domain corresponds to multiplying the  

spectrum with the Fourier Transform Sw of the triangular window: ( ) ( ) 2
sin







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π

π
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Any spectral component k within the range [0, N/2] of an N-size wavetable produces two first 

order aliased components with relative amplitudes given by: 

|(k/N)S|

 |k)/N)((NS| 

w

w ±
=γ , approximated for k << N by 

2







≈

N

k
γ . 

In practical applications, the number of harmonics rarely exceeds kmax = 250, which paves a 

way to pin down aliasing below any desired level by increasing the table size to N >> 2kmax. 

This is just oversampling the tabulated signal. 

We know from the section on sample-based oscillators that the transposition factor should be 

limited to α ≈ [0.75, 2] for a system with fs = 48 kHz and a spectrum up to 20 kHz to avoid a 

dull sound or aliasing. As a wavetable oscillator obeys the same rules, it would only be able to 

generate fundamentals in the vicinity of fo(nat) covering a range of about an octave. To 

alleviate that, different tables are selected depending on the desired fundamental.  

In a first attempt, we could create a new table by halving its size and keeping the lower half of 

the spectrum. It will then have twice the natural fundamental and cover the octave above. 

Unfortunately, aliasing increases because typical spectra have the energy concentrated at low 

k. Additionally, a higher fo(nat) reduces auditory masking of aliased components below the 

fundamental and last but not least, the ear becomes more sensitive with increasing frequency.    

x[n+λ] = (1- λ)x[n] + λx[n+1]  

x[n+λ]  

= x[n] + λ(x[n+1] – x[n]) 

= (1- λ)x[n] + λx[n+1] 

λ 

n+1 n 

λmax = 1 
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Fig. 60: Signals in the Wavetable Oscillator 

 

In an attempt to improve, we keep the table size constant and zero the upper half of the 

preceding half-spectrum. This allows for doubling the transposition factor. It turns out that 

this oversampling scheme together with linear interpolation fits human perception very well. 

A wavetable oscillator that employs this principle is depicted in Fig. 61. To split the phase 

pointer into the integer table index and the fractional offset for interpolation (λ in Fig. 59), the 

same scheme as with the sample-based oscillator can be applied if the table size N is a power 

of two (see code at the end of section 1.4).  
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Fig. 61: Wavetable Oscillator 

 

Low rate pitch modulation should not affect table selection to avoid periodic switching noise 

when the fundamental happens to be near a boundary. As this does not apply to the phase 

input, full FM capability at audio rates is preserved. In case of portamento, switching is 

unavoidable but not perceived normally. A single table may also cover less than an octave and 

the range of α needs not to be centred around fo(nat). 

Design Example: N = 512, fs = 48 kHz, faudio = 20 kHz, αmin = 0.9, αmax = 1.3 

→  fo(nat) = fs/N = 93.75 Hz, ρ = αmax/ αmin = 1.444, X[k] = 0 for N-kmax > k > kmax  

 

Table Index i kmax Frequency Range 

0 213 (= kmax(0) = Nfaudio/fs) 20 to 122 (= ro = αmaxfo(nat)) 

1 147 (= kmax(0)/ρ) 122 to 176 (= ρro) 

2 102 (= kmax(0)/ρ
2
) 176 to 254 (= ρ

2
ro) 

3 71 254 to 367 

4 49 367 to 531 

5 34 531 to 766 

6 23 766 to 1107  

7 16 1107 to 1599 

8 11 1599 to 2309 

9 8 2309 to 3336 

10 5 3336 to 4818 

11 4 4818 to 6960 

12 2 6960 to 10053 

13 1 10053 to 20000 

 

In synthesizers, the fundamental frequency fo is obtained by exponentiation of the actual 

control variable. If this variable is used directly, no case differentiations are required as the 

table index can be calculated directly: 
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We finish this section with examples of aliasing analysis for a tabulated sawtooth. 

Case 1: fo = 500 Hz → kmax = 49 

Signal power normalized to the fundamental:   ∑
=

≈
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SNR in dB = 10log(Ps/Pn) ≈ 58 dB 

No need to worry though; most aliasing occurs above the fundamental and is masked by the 

harmonics. If we assume a uniform noise power spectrum and take only components below 

half the fundamental frequency into account, we obtain a better estimate for the effectively 

perceived SNR: 

10log(Ps/(Pnfcrit/(0.5fs))) = 10log(Ps/(Pn·250/24000)) = 81 dB. 

The aliased spectrum is not continuous however, that’s why we also have to examine the 

worst case, which occurs when the highest harmonic is aliased to a frequency below fo/2: 
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SNR = 10log(Ps/Pn(49)) ≈ 77 dB 

 

Case 2: fo = 4000 Hz → kmax = 5 
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SNR ≈ 89 dB 

 

Conclusion:  

The wavetable oscillator in Fig. 61 shows better spectral performance at higher fundamentals. 

This unusual behaviour is attributed to the combination of oversampling proportional to the 

fundamental frequency and constant output bandwidth. As long as the power is concentrated 

at low harmonics, everything is fine, but noise may become an issue with tabulated band pass 

spectra. In this case, enlarging the table will solve the problem at the expense of increased 

memory requirements. The popular choice of N = 512 is scarcely sufficient, however, for 

state-of-the-art quality, especially when replacing VA oscillators, N = 1024 is recommended.  

Some remarks on the output spectrum: 

Linear interpolation has a Sinc
2
 frequency response. When tables are constructed from 

spectra, we have to emphasize the k-th spectral component by  

[ ]
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/
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π

π
 in order to preserve the highs.  

The same applies to a signal that is extracted in the time domain. Prefiltering it with  

( )
125.075.0

1
−+

=
z

zH pre  before the table segments are gathered is a practical solution. 
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1.11  Hard Synchronization 

Hard synchronization (a.k.a. Sync) of two oscillators descends from classic analog 

synthesizers. Whenever the master oscillator completes a cycle, the slave oscillator is reset to 

the beginning of its waveform (Fig. 62). While the sound of synced pulses is characteristic, 

not to say a cliche, the combination of Sync and FM is one of the most fruitful ad-hoc 

synthesis techniques. In the time domain, a synced signal can be described by multiplying the 

slave oscillator signal with a shifted rectangular window and repeating the resulting segment 

at the master’s rate (Fig. 63). In the frequency domain, this corresponds to the convolution of 

the slave oscillator spectrum with the shifted window spectrum (whose magnitude is a Sinc 

function in this case) followed by resampling the continuous spectrum at the master oscillator 

frequency. 

 

Fig. 62: Hard Sync Oscillator Signals 

 

 

Fig. 63: Hard Sync Signals and Spectra 
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Assuming an unsynchronized slave oscillator signal s(t) with the complex spectrum 

( ) ( )∑
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slvkorig kffcfS δ , the output spectrum of the synchronized signal becomes: 
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Discussion: 

1. The synced signal spectrum has only components at integer multiples of the master 

oscillator frequency and f = 0. 

2. Their magnitude is determined by a sum of phase shifted components derived from the 

unsynchronized signal. These components are copies of the rectangular window 

spectrum centred at the frequency of spectral peaks in the unsynchronized signal and 

weighted by their magnitude. 

3. The bandwidth of the output signal is the bandwidth of the original signal plus the 

bandwidth of the window spectrum. 

As the Sinc function has infinite support and diminishes slowly, aliasing will occur in a 

discrete time realization. We solve this problem by changing the window from a rectangle to a 

function with steeper roll-off and low side lobes. On a 96 kHz system, the rectangle can be 

convolved with a bandlimited impulse, which results in a function that preserves the original 

characteristics of Sync as much as possible without being susceptible to aliasing (Fig. 64). 

This is equivalent to replacing the edges by a BLEP [5]. 

 

 

Fig. 64: Bandlimited Rectangle Window for Hard Sync on 96 kHz Systems 

 

Besides band limiting, there’s a second challenge: We have to detect the zero crossings of the 

master oscillator and since they usually do not coincide with a sample point, we also need to 

set the new phase of the slave depending on the master’s phase to φslv = φmst·fslv/fmst. 

That’s the reason why immediate phase control is vital to slave oscillators. A realization of a 

synced oscillator pair is shown in Fig. 65. We may feed the waveform output of the master 

into the phase input of the slave using a wideband FM circuit to get the exciting combination 

of FM and Sync. In the slave oscillator, it’s important to place any building blocks with 

memory or feedback after the multiplication with the windowed signal if we don’t reset their 

states. Sync produces bias: A DC trap should be added to the output signal chain.  
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Fig. 65: Hard Sync Oscillator Pair 

 

 

Fig. 66: Signals in the Synced Slave Oscillator 
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At point A, a triangle in the interval [0, 1] at the master’s fundamental frequency is present. If 

we want to tweak the system to make it work satisfactorily at fs = 48 kHz, the factor α is 

crucial as it determines the slope at which the window function is evaluated.  

Typical modifications are: 

• Scaling: A lower value reduces the slope and proportionally the bandwidth of the 

window. This results in less aliasing, but the sound becomes peaky for large slave to 

master frequency ratios.  

• Setting a lower limit of 1 to ensure that the window function completes a whole cycle 

even at the maximum master frequency. 

 

Another field of experimentation is the window w(x) with focus on polynomial segments 

whose spectrum rolls off quickly when used as an edge replacement. The simplest function is 

a linear ramp, which results in a triangle window. It can be shown (by iterated differentiation 

and remembering that the Dirac delta has a flat spectrum) that if the n-th lowest order 

derivatives are zero at the borders, the spectrum asymptotically declines at 1/f
n+2

. The lowest 

order polynomial with zero first derivatives that satisfies all side conditions is 3x
2 

– 2x
3
. 

The following design example is suggested for fs = 48 kHz: 
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All spectra are taken with a sinusoidal slave oscillator. For a more complex signal, its spectral 

components could be analyzed separately and summed up. When we consider the spectral 

envelope of typical oscillator signals, an aliased component below fmst/2 can be expected to be 

down by around 80 dB relative to the desired signal. While this situation is satisfactory, it 

worsens significantly for master frequencies at the top of the audio range. In this case, it’s 

preferable to fold down fmst by an octave when it would exceed 6 kHz. 

 

 

Fig. 67: Hard Sync Oscillator Spectrum, fmst = 1050 Hz, fslv = 3700 Hz 
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Fig. 68: Hard Sync Oscillator Spectrum, fmst = 3910 Hz, fslv = 7400 Hz 

 

Fig. 69: Hard Sync Oscillator Spectrum, fmst = 3910 Hz, fslv = 19300 Hz 

 

Fig. 70: Hard Sync Oscillator Spectrum, w(x) =Raised Cosine Window, 

fmst = 3910 Hz, fslv = 7400 Hz 
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Some existing designs employ a raised cosine window that also has zero first and non-zero 

second derivatives at the borders:  
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While being computationally more expensive, its spectral characteristics surpass the 

polynomial solution only marginally (Fig. 70). 

 

Summary: 

Although Sync is feasible in a 48 kHz system, this is one of the cases where a double rate 

system has audible advantages. There’s a trade off between aliasing and sonic authenticity for 

high slave to master frequency ratios. The analog original retains a pleasant broadband 

formant characteristic while the digital version starts to sound like a single resonant peak due 

to the narrow bandwidth of the window (which is essential to limit aliasing). 
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2 Alternative and Specialized Oscillators 

2.1 Sinusoidal Oscillators based on Second Order Systems  

 

This class of sinusoidal oscillators is the most efficient for fixed parameters. On the other 

hand, phase control involves the calculation of trigonometric functions to high precision 

rendering audio rate modulation laborious. Even maintaining a smooth signal and constant 

amplitude when the frequency is changed is not trivial. 

2.1.1 Coupled Form Oscillator 

 

An archetype of the aforementioned oscillator class is obtained by encoding the elements of  

a rotating vector into the state variables of a second order system (Fig. 71). The resulting 

oscillator has two outputs whose phases differ by 90°, hence sine and cosine functions are 

generated simultaneously. The phase increment φ is proportional to the frequency:  

φ = 2πfo/fs. This relation is used throughout the entire section. 

 

 

 
Fig. 71: Coupled Form Sinusoidal Oscillator 
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Suggested initial conditions: x = (1, 0). 

 

The structure is insensitive to both coefficient and state quantization. It exhibits neither 

glitches nor permanent changes of the amplitude when φ is modulated. In a practical 

realization, the amplitude drifts with time due to roundoff errors. As a workaround, we may 

scale the coefficients by a factor slightly above 1 and use saturation arithmetic. Another 

method is to approximately normalize the state vector from time to time as follows: 
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2.1.2 Direct Form Oscillator 

 

Another oscillator type is found by plugging x[n] = sin(nφ + φo) into the trigonometric 

identity sin(a+b) + sin(a-b) = 2sinacosb. We get: x[n+1] + x[n-1] = 2x[n]cosφ. 

A direct form one topology is used to implement the equation (Fig. 72).    

 

 
Fig. 72: Direct Form Sinusoidal Oscillator 
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  ; State Space Equation of the Direct Form Oscillator 

 

Suggested initial conditions, must be set whenever φ changes: x = (1, cos φ) or (sin φ, 0). 

 

This is the efficiency champion among sinusoidal oscillators. However, its application range 

is limited because the amplitude exhibits a discontinuity and undergoes a permanent change 

when φ is set to a new value without an accompanying state update. Furthermore, the use of 

single precision arithmetic for φ < 0.003 causes the SNR to drop below 80 dB and introduces 

an audible tuning error due to coefficient quantization. In order to solve the amplitude issue, 

we first note that the desired new value of x1 is linked with x2 by the phase increment φnew:  

 

Combining ( )newnx ϕϕϕ ++= 01 sin  and ( )02 sin ϕϕ += nx   yields  

( ) ( ) newnew nnx ϕϕϕϕϕϕ sincoscossin 001 +++=     and finally 

newnew xxx ϕϕ sin1cos
2

221 −±= . 

 

The new output amplitude is 1; consequently this should also have been the case before (as 

with the suggested initial conditions). Roundoff errors may lead to excess amplitude, so we 

have to limit |x2| to 1 before taking the root. Regular state updates without actually changing 

the frequency help to stabilize the amplitude. Determining the sign is not trivial: Probably the 

best way is to add another delay element. Before the frequency update, the states are: 

 

( )( )01 1sin ϕϕ ++= nx  and ( )( )03 1sin ϕϕ +−= nx . Therefore 

( ) ϕϕϕ sincos2 031 +=− nxx , which has the sign of cos(nφ+φo). 

 

Whenever φ changes, we just set the new state x1 according to the formula 

( ) ( ) newnewnew xxxxx ϕϕ sin1sgncos
2

23121 −−+=   with  φnew = 2πfo(new)/fs 

before the next value of x1 is calculated. The oscillator will then seamlessly proceed at the 

new frequency. There must be at least one unit delay between consecutive changes lest the 

value of x3 is incorrect. Rewriting the equation, only the cosine function has to be computed: 

 

( ) ( ) ( )( )newnewnew xxxxx ϕϕ 22

23121 cos11sgncos −−−+= . 
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2.1.3 Chamberlin Oscillator 

 

Another interesting approach is the state variable filter described in [6] with Q set to infinity 

(Fig. 73). 

 
Fig. 73: Chamberlin Sinusoidal Oscillator 
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Suggested initial conditions: x = (1, -sin(φ/2)) or (0, cos(φ/2)). 

 

Both eigenvalues λ1,2 = e
±iφ

 are complex conjugate and located on the unit circle, hence the 

system actually oscillates at fo = φfs/(2π). At low frequencies, the outputs are approximately 

orthogonal. The exact phase relationship is obtained from the transfer function: 
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We also see that both outputs have identical amplitudes: 1)(12 =ϕi
eH . 

If we want perfect orthogonality, the pair x1[n] and x2m[n] = (x2[n] + x2[n+1])/2 does the job 

at the expense of a slight amplitude difference: ( )2/cos)(12 ϕϕ =i

m eH . 

 

Like the Coupled Form type, this oscillator is insensitive to quantization errors and works 

well with single precision arithmetic down to the infrasonic range. Moreover, only one tuning 

coefficient is required. Frequency changes do not induce a discontinuity at the outputs as they 

are tapped off integrators - however, a minor amplitude change occurs due to the frequency 

dependent deviation from orthogonality. Saturation arithmetic combined with slightly 

increased feedback by setting α to 1 + 0.01φ instead of 1 eliminates this effect and any 

amplitude drift caused by roundoff errors. If saturation is applied only to x1, the resulting 

harmonics are reduced in x2 by the low pass action of the integrator.   

 

Depending on the desired tuning accuracy and the ratio of maximum frequency to sample 

rate, one may experiment substituting polynomials for trigonometric functions or even 1 for 

cosφ and φ for sinφ in the Coupled Form and the Chamberlin oscillator. In the former, the 

amplitude must be limited by clipping or saturation as the approximation moves the poles 

outside the unit circle. Immediate absolute phase control is possible by setting the states 

directly using trigonometric functions. 
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2.2 Oscillators based on Discrete Summation Formulae (DSF) 

 

In section 1.5 we adopted the concept of a bandlimited impulse train (BLIT) to derive classic 

waveforms. There’s a way to calculate an ideal BLIT by combining a summation formula for 

the Geometric series with Euler’s formula [7]: 
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If we set a = 1, the BLIT has a flat spectral envelope. Converting the difference of the highest 

frequency terms to a product and expressing the rest as half angle functions yields: 
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The first expression can be evaluated with reasonable effort on most floating point processors 

using two linearly interpolated sine table lookups and a division. The number of harmonics N 

is set whenever the fundamental frequency changes but does not follow pitch modulation (the 

same scheme as with wavetable synthesis). The main advantage of such a DSF-BLIT is the 

complete absence of aliasing at any fundamental in the whole audio band. Unfortunately, 

there’s no closed-form solution to produce time integrated descendants to emulate classic 

waveforms. Instead, they must be generated by subsequent integration sacrificing immediate 

phase control. 

 

Remarkably, some expressions are free of the time consuming division. On the other side, the 

cotangent is singular at integer multiples of π and the function has maxima within an order of 

magnitude of N. For the following, we concentrate on mblitc(t,N), because this function 

results in a bandlimited sawtooth when integrated. A different factorization eliminates the 

singularity. After amplitude normalization and substituting φ for ωt, we get: 
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This function is even and periodic in 2π. Therefore, φ can be confined to the range [-π/2, π/2] 

for evaluation. Both products are limited to a magnitude of 1. While the second term 

resembles an upside-down parabola and calls for polynomial approximation, the Sinc would 

require an impractically large table, even with linear interpolation, because N hits 1000 if the 

oscillator operates at a fundamental of 20 Hz. We already know that this kind of problem can 
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be solved by windowing at the expense of a broader spectrum. It turns out that a train of 

bandlimited impulses from section 1.3 is more efficient in terms of arithmetic operations and 

memory, but since the windowed DSF-BLIT approach still crops up now and then, we 

nevertheless give an example. 

 

A limit of |Nφ| < 12π combined with a simple approximation for xcot(x) has proven sufficient 

to keep aliasing down by 80 dB up to a fundamental of 4 kHz on a system with fs = 48 kHz. 

Low aliasing at higher fundamentals would require a more precise approximation. For 

compactness, we normalize and wrap φ to [-1,1] to get the windowed BLIT system listed 

below with the spectrum of Fig. 74. 
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When the function s(Nφ) is tabulated, at least 30000 entries for one of the symmetrical halves 

are recommended for non-interpolated readout; about 1000 are sufficient if linear 

interpolation is applied. 

 

  

Fig 74: Windowed DSF-BLIT Spectra 

 

A BLIT is typically used as an excitation signal for resonating systems like formant and comb 

filters or physical models. As we already know, it can also be integrated to make a sawtooth. 

Such a system is shown in Fig. 75 and employs a low pass filter as a leaky integrator, whose 

frequency tracking prevents amplification of residual bias and aliased components below the 

fundamental. 

 

To conclude the foregoing, the DSF-BLIT oscillator is mainly attractive if division is 

executed fast and the BLIT is used in its original form. It is also first choice in applications 

where a perfectly pure or exponentially decaying spectrum is essential. 
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Fig. 75: DSF-BLIT Sawtooth Oscillator 
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2.3 Oscillators based on Integrated Prototype Signals 

2.3.1 Differentiated Parabolic Wave (DPW) Oscillator 

 

These oscillators have been introduced in [15] and attract some interest due to a complexity 

between the naive and the BLIT-based approach. A train of parabolic segments can be 

constructed in a way that the harmonics decrease at 1/f
3
 thus reducing the risk of fold-over. 

This signal is then differentiated to get the desired shape. In a discrete time realization, finite 

difference is used to approximate continuous time differentiation. Since both operations are 

linear, no aliasing occurs at this stage. Furthermore, their high pass characteristic helps to 

suppress aliased components below the fundamental. The triangle oscillator is an especially 

useful embodiment of this concept since the signal has low harmonic content and alternatives 

are computationally intensive. 

 

 
Fig. 76: DPW Triangle Oscillator 

 

 

 
 

Fig. 77: Signals in the DPW Triangle Oscillator 

 

 

Harmonic analysis of the parabolic segment train yields for the sampled values: 
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Due to its spectral properties, the signal B[k] can replace a sinusoid when purity is uncritical 

(e.g. in LFOs) or in sub oscillators as long as the fundamental remains below fs/20.  

 

The signal C[k] is obtained directly from B[k]: 
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For frequency components well below fs, the condition πnfoT << 1 holds and C[k] can be 

approximated as: 
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The Fourier series of a discrete time triangle is: [ ] ( )kTnf
n

kTri o

n

π
π

2cos
18

,..5,3,1
22 ∑

∞

=

=  

From the above we conclude the following: 

 

1. The scaling factor becomes fs/(2fo).  

2. The output is time shifted by half a sampling period. 

3. The relative amplitude deviation for a component at the frequency f is sin(πf/fs)/(πf/fs). 

Example: For f = 20 kHz and fs = 48 kHz, an attenuation of 2.6 dB occurs. Hence, post 

filtering may be omitted. 

4. Aliased components can be calculated directly using the fact that a discrete time 

sinusoidal has an fs-periodic spectrum. Example: fo = 5 kHz, fs = 48 kHz. The first 

component that is aliased below fo occurs at n = 9 because |fs – 9fo| < fo. 

5. The closer a component gets to a multiple of fs, the weaker it becomes. This reduces 

aliasing to low frequencies and is a very desirable consequence of taking the time 

difference (which has the magnitude response 2sin(ωT/2)). 

 

 

Fig. 78: Spectrum of the DPW Triangle Oscillator (fo = 2.05 kHz, fs = 48 kHz) 
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Aliased components one octave below the fundamental fo are down by 80 dB for fo ≈ 0.06fs 

and increase quickly to 63 dB for fo ≈ 0.1fs. Therefore, typical applications are sub oscillators 

and LFOs. On a double rate system, one might also consider using it as a main oscillator, at 

most with the top octave wrapped or replaced by a sinusoid. For this purpose, immediate 

phase control is feasible by calculating both B[k] and B[k+1] whenever the phase is set to a 

new value.  

A sawtooth oscillator can be constructed following the same principle. Since the source signal 

is a train of non-alternating parabolic segments, its first derivative has discontinuities at the 

segment ends and the spectrum consequently declines only by 1/f
2
. This algorithm is 

recommended for audio purposes up to a fundamental frequency of fs/50, which may be 

suitable for a fast LFO or a sub oscillator on a 96 kHz system. 

 
Fig. 79: DPW Sawtooth Oscillator 

 

Fig. 80: Spectrum of the DPW Sawtooth Oscillator (fo = 1.15 kHz, fs = 48 kHz) 

 

It should be mentioned that the very economical algorithm and its topology encourage 

oversampling (s. [15] for examples). 

One may be tempted to extend the operating range using a smoother shaper function like x-x
3
 

instead of x
2
 and then differentiate twice. This approach has severe drawbacks: High precision 

arithmetic is required, a one-sample spike occurs when the frequency is changed abruptly, the 

extension for immediate phase control is cumbersome, and finally it covers about half the 

frequency range of a BLIT-based oscillator with comparable computational effort. Therefore, 

we don’t pursue this idea further. Instead, we are going to investigate the working principle 

with the intention to eliminate differentiators altogether and generalize the idea. It turns out 

that DPW oscillators can be viewed as an efficient realization of segment-based oscillators in 

which the segment is obtained by convolving the naïve waveform with rectangular pulses. 
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2.3.2 Segment-Based Integrated Prototype Signal (SIPS) Oscillator 

 

First, we observe that in a DPW system the unit time delay z
-1

 can be replaced by a 

continuous time delay T without affecting the behaviour. Therefore, the discrete time system 

is equivalent to a continuous time model whose output is sampled at intervals T. For further 

analysis, we will treat it as continuous. 

The goal is to render a trivial non-bandlimited prototype signal x(t) with minimal aliasing. At 

the input of the delayed difference block (Fig. 76, node B) we see the time integral X(t) of the 

prototype signal. X(t) equals the total area under the graph of x(t) (Fig. 81). The continuous 

output signal is the area difference within an interval T. In the discrete time system, the output 

is just this signal sampled in intervals of T.   

 

 

Fig. 81: Working Principle of Integrated Prototype Signal Oscillators 

 

This process is equivalent to convolving the prototype signal x(t) with a rectangular pulse of 

width T followed by sampling at intervals of T. Consequently, the spectrum of x(t) is 

weighted by the spectrum Srect(f) of the pulse before the output signal is sampled. 

Because  

( )
( )s

s

rect
ff

ff
fS

/

/sin
)(

π

π
=  

exhibits zeros at integer multiples of the sample rate fs, the output contains much less low 

frequency aliasing than a sampled prototype signal would.  

It’s important to see that two continuous time signals are convolved, so it’s not the same as 

with the sample-based oscillator: Sliding a window over the prototype function and evaluating 

it in intervals of T would fail deplorably at discontinuities. The reason is that we would 

approximate the areas by single values obtained from sampling the prototype function at 

multiples of T around the current location. This is equivalent to sampling the prototype signal 

after it has been convolved with a discrete time version of the window, which does not have 

zeroes at multiples of fs but a spectrum periodic in fs.   

From the above discussion we see, that the only thing we can do, is to find out how to 

calculate the continuous time convolution for a given prototype function.  

Prototype Signal x(t) 

T T 

This area is the output at (k+1)T 

This area is the output at kT. 

Sections below the abscissa are 

counted negative. 

t 
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Fortunately, this is possible for the sawtooth and results in the system depicted in Fig. 82. 

 

 
 

Fig. 82: SIPS Sawtooth Oscillator 

 

Since the SIPS sawtooth oscillator inherits the limited useful operating range from the DPW 

analogue, we might wish to go one step further and design higher order versions by repeated 

convolution of the sawtooth with the rectangular pulse. For convenience, we avoid nasty 

algebra, perform the convolution numerically with a technical computing tool, and exert a 

polynomial fit to the result. The 2
nd

 order case yields a simple closed form solution (Fig. 83). 

 

 
Fig. 83: Second Order SIPS Sawtooth Oscillator 

 

 
 

Fig. 84: Spectrum of the Second Order SIPS Sawtooth Oscillator  

(fo = 3.87 kHz, fs = 48 kHz, no Postfilter, Red Line = Ideal Sawtooth Spectral Envelope)  

wrap y(x) z
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  x     ; else  
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This algorithm supports immediate phase control and performs well as a sub oscillator. We 

may even consider it as a main oscillator in 96 kHz systems. A postfilter Hpf could be inserted 

to equalize the [sin(πf/fs)/(πf/fs)]
2
 frequency response caused by the double convolution with 

the pulse: 

( )
125.075.0

1
−+

=
z

zH pf . 

Higher orders lead to polynomials of at least 6
th

 degree. In this case, the VA sawtooth 

oscillator is preferable since it has been tailored in the frequency domain for lowest audible 

aliasing. 

We may notice that the function of the second order SIPS oscillator has a continuous first 

derivative at the segment boundaries. This is not as surprising as it seems: Any polynomial 

with the two lowest order coefficients being zero would satisfy this condition because the first 

derivative of the simple sawtooth is constant at those points. Unfortunately, this is no shortcut 

to better segments since a higher order polynomial from scratch namely produces the 

expected steeper spectral roll-off, but not necessarily the essential zeroes at or near multiples 

of the sample rate. 
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2.4 Oscillators based on Polynomial Shaping (PS) 

2.4.1 Chebyshev Polynomial Shapers 

 

Chebyshev polynomials of the 1
st
 kind are defined by cos(nφ) = Tn(cosφ). Feeding such a 

polynomial with a sinusoidal wave generates the pure n-th harmonic of the fundamental. If the 

source delivers a quadrature signal, it’s also possible to produce orthogonal harmonics using 

Chebyshev polynomials of the 2
nd

 kind, which are defined by sin(nφ) = sinφUn-1(cos φ). 
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1 x 1 

2 2x
2
-1 2x 
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4 8A4 8B4 

5 16A5 16B5 

 

Chebyshev series may also be evaluated efficiently by Clenshaw’s recurrence. 

 

 

Fig. 85: CPS Oscillator 

 

The CPS oscillator supports immediate phase control. If we only need 2
nd

 and 3
rd

 harmonics 

without quadrature output, replacing the cosine wave by a naïve triangle is an alternative. The 

following polynomials will make the modified oscillator sound good up to fo = fs/12: 
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For n > 3, it’s better to convert the triangle to a sinusoid and shape it afterwards. 

 

2.4.2 Polynomial-Shaped Triangle Oscillator 

 

In a completely different semi-empirical approach, we now try to replace the rather complex 

VA triangle oscillator. Aware that a bandlimited triangle can be formed from a simple one by 

subtracting a fixed length constant segment scaled proportionally to the fundamental 

frequency, we come to the following idea: Take a polynomial that converts a triangle into a 

sine and hope for the scaling to work satisfactorily. Such a design philosophy rarely yields 

professional results, but as the harmonics roll off quickly and the desired output is already 

sinusoidal at fo = 6.6 kHz, we might once be lucky.  

 

The ideal segment length turns out to be 3 in the main range, but then a sinusoid won’t be 

generated below fs/3 = 16 kHz, so the length is gradually changed in the transition region. 

Switching would also work if the amplitude is adjusted accordingly to avoid a discontinuity. 

 

 

( )
116.084.0

1
−+

=
z

zH pf  

 

Fig. 86: Bandlimited Wide Range PS Triangle Oscillator 

 

 

The spectrum is quite clean and makes this oscillator a valuable alternative to the VA type. It 

can be expected to generate slightly more than half the processing load and delivers a 

sonically pleasant signal with aliasing unlikely to be heard. When customized appropriately, it 

performs excellent on a 96 kHz system. 

wrap y(x) z
-1

 

Frequency Update 

 

flim = 6fo/fs 

r = min(1, (flim + 16flim
16

)/2) 

s = 1 - r 

invs = 1/r  

 

wrap φ Hpf 2|x|-1 

Audio Update 

 

y(x) = sgn(x) ·invs·(|x|-s)   ; |x| > s 

0      ; otherwise 

p(x) = (0.04575x
5
 - 0.40889x

3
)r 

p(x) fn 
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Fig. 87: Spectra of the Wide Range PS Triangle Oscillator 

(fo = 4.2 kHz and 15.5 kHz, fs = 48 kHz) 

 

 

2.4.3 Higher Function Shapers 

 

Polynomial shaping of a sinusoid provides exact control over individual harmonics and is 

inherently band-limiting as the highest harmonic equals the degree of the polynomial. The 

overhead is rather high though. Sometimes, it’s more desirable to have simple bandwidth 

control over a naturally evolving spectrum. Some window functions and their time integral 

perform very well as shapers in this case. An interesting choice is the Gaussian, which leads 

to a spectrum whose magnitude is described by modified Bessel functions of the 1
st
 kind In(x): 

It shows the steep decline of an FM spectrum without exhibiting dips. If we feed the Gaussian 

with a sine wave, a BLIT is produced: 

  

( ) ( )( )2sin ft
etxBLIT

πβ
=   ; β = bandwidth control, f = fundamental frequency 

 

 

Fig. 88: Gaussian-Shaped Sinusoidal BLIT (discrete time version) 
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Spectrally, it is quite similar to the WSO-BLIT but with improved evenness, a slight 

advantage that might occasionally justify the appreciably higher resource requirements. 

While bell-shaped functions are suitable to create an impulse train, sigmoidal shapes may be 

used for square wave generation. The VA pulse oscillator does of course fit that purpose too if 

the duty cycle is set to 50%, but this would be a sheer waste of processing time. Instead, a 

simple triangle is shaped by the error function erf(x), the time integral of the Gaussian, and β 

scales the input to adjust the bandwidth. This approach yields a high-quality bandlimited 

square wave using the embodiment of Fig. 89. 

 

( )
136.064.0

1
−+

=
z

zH pf  

Fig. 89: Square Wave Oscillator using Error Function Shaped Triangle 

 

The factor in the calculation of β may be tuned further by starting with 0.31 and linearly 

diminishing it to 0.28 between fo = 2 to 4 kHz. The error function is preferably tabulated up to 

an argument of ±3 and set to ±1 outside this range. 

 

Fig. 90: Square Wave Oscillator Spectrum 

 

This system works great in sub oscillator applications. If pulse width modulation is 

dispensable and switching to a sinusoidal for fundamentals above fs/6 is implemented, it may 

even serve as a main oscillator. Furthermore, varying β enables filter-less bandwidth control.  

 

We finish this section mentioning that several synthesis methods can be modelled as a special 

case of wave shaping. An example is FM synthesis, where the connection is uncovered by 

applying trigonometric addition theorems to a PM signal [8].  

 

 

wrap z
-1

 wrap 

φ 

Hpf 2|x|-1 erf(βx) 

β = 0.3fs/fo 

fn 
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2.5 Phase Distortion (PD) 

 

Any oscillator based on a phase accumulator can be extended with phase distortion (PD) 

capabilities. The idea is to shape the linearly increasing phase signal of the accumulator such 

that the original waveform of the oscillator is distorted in order to produce more harmonics 

within a well controlled band. In the Eighties, commercial PD synthesizers were built, 

although with moderate success, mainly because the competing FM synthesizers generated 

more complex spectra. With the revival of analog timbres and today’s digital filters, there’s 

good reason to reanimate this method.  

 

Fig. 91 depicts the basic setup. fPD is the shaper, preferably a sigmoid type function if we 

intend to modify an arbitrary waveform. fWV translates a linearly increasing phase into the 

undistorted original waveform.  Both functions assume an input range of [-1, 1] and deliver an 

output range of [-1, 1]. The complex arrangement to the right is just to cross fade from the 

distorted to the original phase when the modulation index m is below 1. In applications where 

it either always or never exceeds 1, the circuit can be simplified. Since PD potentially 

generates bias, a DC trap should follow the output. 

 

 

Fig. 91: Basic PD Setup 

 

Fig. 92: Spectrum of the Basic PD Setup 

(m = 1, fWV = sin(πx), fPD = 0.39675x
5
 – 1.2935x

3
 + 1.89675x)      

wrap fWV(x) z
-1

 

wrap fPD(x) 

max(m,1) 

- 

max(m,1) 

m 

- 

(1,1) 

fPD 

 

φ 

fn 

Phase Distortion Circuit 
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Sigmoidal functions allow parametric control of the slope while they remain bounded and 

saturate smoothly. The major criterion is spectral compactness since we want a lot of 

harmonics with minimal aliasing. Integrated window functions with zero 1
st
 and small 2

nd
 

derivatives at the boundaries perform very well. Recommended shapers for sine and cosine 

waveforms are listed below. 

 

fPD(x)  

(± 1 for |x| > 1) 
fWV = sin x fWV = cos x 

x + sin(πx)/π  + + 

0.39675x
5
 – 1.2935x

3
 + 1.89675x    + + 

1.5x – 0.5x
3
 - o 

 

Some general statements can be made regarding these functions: It’s less critical to shape a 

cosine because it already has zero 1
st
 derivatives at the boundaries; the resulting low pass 

spectrum is however biased. A shaped sine acquires a band pass characteristic for high 

modulation indices but remains unbiased. 

 

The input to the waveform function fPD must span the interval [-1, 1] in order to complete a 

whole cycle. Hence, the modulation index m should be bounded to above 1 for the functions 

listed. We may cross-fade the shaped into the original phase signal for m < 1 and reduce m 

towards zero with increasing fo to morph the oscillator output into a sinusoid for very high 

fundamental frequencies. A more sophisticated, although a bit luxurious, realization replaces 

fWV(x) by fWV(x)/fWV(m). 

 

When phase modulation is applied to the basic setup, FM spectra with enriched harmonics 

controlled by the PD modulation index are generated. Moreover, the annoying timbre of 

overdosed FM, which would be needed to create comparable harmonic content without PD, is 

completely absent. 

 

A PD-BLIT is obtained by shaping a cosine and subtracting the bias. Compared to the WSO-

BLIT, the postfilter must have about twice as much gain at 20 kHz, which is disadvantageous 

when the BLIT is modulated as the filter will then process a modified spectrum and its higher 

influence causes stronger spectral errors. However, this approach is recommended on double 

rate systems, where a simpler shaping function suffices and filter action is moderate. 

 

 

Fig. 93: Unfiltered PD-BLIT Spectrum  

(fWV = cos(πx), fPD = 0.39675x
5
 – 1.2935x

3
 + 1.89675x) 
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2.6 Oscillators based on Windowed Segments 

2.6.1 Principles 

 

This versatile oscillator class occurs in a bewildering variety of embodiments whose 

suitability depends on the actual application and hardware infrastructure. However, the 

synthesis part is usually realizable with building blocks and techniques we already discussed. 

 

The generic signal structure (Fig. 94) resembles those of a hard synced slave oscillator. The 

spectrum is the convolution of the spectra of a window function w(t) and an oscillating 

function s(t) sampled at multiples of the repetition rate fo. In a discrete time realization, the 

segment start will usually not coincide with a sample point; something that is occasionally 

neglected for simplicity but has to be considered when the algorithm should sound good for 

fundamentals above a few 100 Hz. 

 

 

Fig. 94: Generic Windowed Segment Oscillator (WSO) 

 

This setup can generate formants without using filters: The frequency of s(t) determines their 

centre, the width is inversely proportional to the length of w(t), and the fundamental 

frequency equals the repetition rate. Major criteria for the combination of w(t) and s(t) are 

smoothness with a corresponding steep spectral roll-off, finite support, parametric control, 

and low computational demand. Some classical algorithms, originally invented to model the 

human voice, are (continuous time prototype functions of a single cycle shown): 

 

Method s(t) w(t) 

VOSIM ( )ϕω +ts

2sin  

( ) ( )
[ ] τα

τ
τ

Nt

Ntt
tfloor

≤≤

>∨<

0;

0;0
/  

τ = 1/(πωs), N integer, Nτ < To, 0 ≤ α ≤ 1 

FOF ( )ϕω +tssin  
( )( ) β

β

βπ

α

α

/1;

/10;

0;

cos1
2

1
0

≥

<<

≤

−

−

−

t

t

t

e

et

t

t  

0 < α, β 

Modified FOF ( )ϕω +tssin  

( ) ( )( )

( )( ) ( )( )( )

( ) ( )

( )
( ) oo

o

o

t

oo

t

t

TtT

Tt

t

Ttt

etTtT

e

ett

<≤−

−<≤

<<

≥∨≤

−−−

−

−

−

−

β

ββ

β

ββ

ββ

α

α

α

/1;

/1/1;

/10;

0;

23

23

0

32

32

0 < α, β 

t 

To 

w(t) 

s(t) 

Time Domain Spectral Domain 

f 

fo = 1/To 

W(f) 

S(f) 

0 



Digital Sound Generation  Beat Frei, 10-07-19, ICST 71/85 

2.6.2 VOSIM 

 

Let’s look at a VOSIM [9] example to get familiar with windowed segment oscillators. 

Typical VOSIM spectra have a formant peak and a strong cluster around the fundamental that 

adds to the body of the sound. The special case of two adjacent full scale cycles leads to a 

particularly efficient realization of a bandlimited formant oscillator. For fundamentals above 

fs/12, the output fades into a sinusoid in the system shown (Fig. 95). 

 

 
Fig. 95: Basic VOSIM Formant Oscillator 

 

 

 
 

Fig. 96: Basic VOSIM Formant Oscillator Spectra (at node C) 

wrap φ x
2
 sin(πx) 

wrap z
-1

 

1 

-1 

ffmt/(2fo) 

fo/ffmt 

- 

ffmt ≥  2fo, ffmt = 2fo for fo > fs/12 

(ffmt/(2fo))
1/2

 

C A B 

fn 
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Fig. 97: Continuous Time Prototype Signals in the Basic VOSIM Formant Oscillator 

 

 

Within the system’s operating range, the spectra of the continuous time prototype signal and 

the discretized version barely differ. We calculate the Fourier series with τ denoting the width 

of a single raised cosine segment to obtain the amplitudes An of the harmonics at node C in 

Fig. 95: 
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Starting at the low end, the spectrum exhibits a dip at n ≈ To/(2τ), peaks for n ≈ To/τ with a 

value An ≈ τ/(2To), and then asymptotically decays at -18 dB/octave. The approximate 

formant frequency ffmt is linked to τ by the relation ffmt = nfo = 1/τ. Bias compensation is 

realized by subtracting Ao = τ/To = fo/ffmt from the output. We deduce from the time domain 

that the signal energy is proportional to τ/To and therefore also to fo/ffmt for 2τ < To. This leads 

us to the employed normalization scheme. 

 

When synchronous VOSIM signals with identical fundamentals are superimposed, the 

fundamental regions add up in phase. The same also holds for adjacent formant components. 

In practical applications, it’s often a good idea to invert one of the VOSIM signals. While 

such a system sounds pleasant and is real fun to experiment with, we should be aware of 

alternatives that provide easier handling of spectral control, a feature coming to great 

advantage in the precise emulation of the human voice and other formant-based instruments. 

 

In the next two subsections, we are going to follow up the idea of combining two simple 

segments and see what we get. 
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2.6.3 Modified VOSIM Formant Train Oscillator 

 

An unbiased formant train without prominent fundamental region is obtained by inverting one 

of the cosine segments. It sounds rich and features the interesting characteristic of a damped 

pipe resonator. Unfortunately, the broad spectrum also makes it prone to aliasing, thus 

limiting the recommended formant center frequency to about 2.5 kHz on a 48 kHz system. 

However, we may replace band-limited impulses of section 1.3 for the raised cosines to 

extend both formant and fundamental range to fs/8. Another option is to superimpose two 

time-shifted BLITs of section 2.6.6. 

 

 

 
Fig. 98: Modified VOSIM Formant Train Oscillator 

(Recommended for double rate systems) 

 

 

 
 

Fig. 99: Spectrum of the Formant Train Oscillator (not normalized) 

 

wrap x|x| sin(πx) 

wrap z
-1
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1/2

 

fn 
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2.6.4 Wide Formant Oscillator (WFO) 

 

We may wonder if it’s possible to further modify the preceding algorithm to render it useable 

over the whole audio range. The crux is the raised cosine, which is just too narrow when 

applied to every single segment. A way to stretch it without affecting the smooth borders and 

the shape itself too much is to weight a single sine cycle with a raised cosine that extends over 

the whole cycle: 
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33
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It turns out that this segment delivers a general purpose band pass spectrum when repeated. A 

polynomial approximation may be used in the actual wide formant oscillator: 

 

( ) ( ) 4.8341x19.8169x-32.7775x27.8871x-12.5485x-2.4561x 357911 +++=≈ xPxysgm  

 

 

 

Fig. 100: Wide Formant Oscillator (WFO) 

 

 

Fig. 101: WFO Spectrum (not normalized) 

 

For fundamental frequencies above fs/12, the output consists of the fundamental and the 1
st
 

harmonic at half the amplitude. 
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fn 
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2.6.5 Variable Width Formant Oscillator (VWFO) 

 

Formant synthesis not only requires parametric width control but also much narrower peaks 

than those provided by the WFO. This is easily achieved by varying the width of the raised 

cosine window. In the system of Fig. 102, β sets the width relative to fo. 

 

Fig. 102: Variable Width Formant Oscillator (VWFO) 

 

Fig. 103: VWFO Spectrum (β = 1, not normalized) 

 

Fig. 104: VWFO Spectrum (β = 6, not normalized) 

wrap (cos(πx) + 1)/2 

wrap z
-1
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fn 
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Minimum formant peak width occurs for β = 1 and is determined by the spectrum of the 

raised cosine. The resulting –6 dB bandwidth becomes BW-6dB ≈ 2βfo (approximately, 

because the spectrum is symmetrical to the y-axis but with opposite signs, hence 

superimposed components from one side partially cancel those of the other). 

 

For fo > fs/8, the output of consists of the fundamental and the 1
st
 harmonic at half the 

amplitude. 

 

 

2.6.6 WSO-BLIT Oscillator 

 

Windowed segment oscillators also make good variable bandwidth BLIT sources if an 

appropriate bandlimited impulse segment is used. When VOSIM is configured to repeat a 

single fixed width raised cosine segment, the spectrum can be made flat up to fs/8 without 

introducing audible aliasing. This is ideal for voice synthesis where too much high frequency 

content is perceived as unwanted buzz. 

 

Full audio bandwidth BLITs are obtained by periodically repeating one of the bandlimited 

impulses of section 1.3. At least 10 kWords of memory are recommended to tabulate the 

segment for non-interpolated readout. Alternatively, the table look-up can be replaced by a 

polynomial approximation. Large impulses will limit the maximum fundamental frequency 

and lead to polynomials with over a dozen terms. Therefore, we stick to a short 4-sample 

impulse and get the system shown in Fig. 105 with fo(max) = fs/4 and ± 0.8 dB ripple in the 

spectrum. Approximating the square root instead of the segment itself saves two product 

terms. 
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Fig. 105: WSO-BLIT Oscillator 

 

 

If two time-shifted WSO-BLITs are added or subtracted, a variety of interesting spectra 

including wide range versions of the basic VOSIM formant and the formant train oscillators 

are obtained. Additionally, pulse width modulation is achieved by varying the time shift. 

 

In general, the raised cosine may be replaced by a tailored bandlimited impulse in each of the 

aforementioned designs in order to roughly double the useful frequency range. 
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Fig. 106: WSO-BLIT Spectrum (fc = 0.234fs, including bias, not normalized) 

 

Fig. 107: WSO-BLIT Spectrum (fc = 0.026fs, including bias, not normalized) 

 

 

Fig. 108: WSO-BLIT Spectrum (fc = fo, including bias, not normalized) 
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2.6.7 FOF 

 

FOF (fonction d'onde formantique) generates a band pass spectrum suitable for additive 

formant synthesis. It outperforms VOSIM when straightforward control of the spectrum and 

the ability to create narrow peaks are crucial. The latter is achieved at the expense of a long-

tailed (theoretically infinite) signal which in practice causes the computational effort to 

depend on the parameters. FOF is a key ingredient of CHANT [10], a program for the 

synthesis of the singing voice and other instruments. 

 

Modified FOF has finite support and uses a polynomial that can be evaluated faster than the 

cosine on today’s machines. Due to finite segment length, the minimum formant width is 

limited by the fundamental. 

 

In both methods, a DC trap should be added to eliminate any residual output bias. 

 

 

Fig. 109: Modified FOF Spectrum 

 

 

Fig. 110: Modified FOF Spectrum 
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2.6.8 Remarks on Windowed Segment Oscillators and Formants 

 

If the fundamental is bounded to the lower decades of the audio spectrum, one may consider 

second order feedback sinusoidal oscillators to compute trigonometric functions as the 

laborious setting of initial conditions occurs rarely and they can be tweaked for exponential 

decay. 

 

Some sophisticated algorithms have been developed and optimized to not produce spectral 

dips when formants overlap (e.g. PAF, IRCAM, 95). When it comes to just adding a vowelish 

timbre with low control overhead, delay-based comb filters are a great sounding option, 

because they generate a formant train which is characteristic of many natural resonators. 

Some ad hoc methods yield likewise spectra on commercial synthesizers, for example: FM 

(often combined with Hard Sync), audio rate sawtooth modulation of the filter cut-off 

frequency, nonlinear distortion of a band pass signal, vocoder techniques like feeding a 4
th

 

order band pass filter bank with a broadband spectrum. 

 

So far, the segments have been parametric functions. Interesting applications like formant 

preserving pitch shift arise from using samples or real-time audio as segments. Professional 

systems of this kind tend to be very sophisticated and include a lot of signal analysis, so they 

are not covered in the oscillator chapter. However, the main idea is simple enough to start 

experimenting:  

 

• Grab a section of a time-domain signal, weight it with a window function, and repeat it 

at the desired fundamental frequency with or without overlap avoiding truncation.  

• In the frequency domain, the following happens: The spectrum of the selected section 

is convolved with the spectrum of the window and then discretized to multiples of the 

new fundamental frequency.  

 

The section length, and to a lesser degree the window type, are critical. For oscillator 

purposes, a raised cosine window with a length of one period of the original signal is 

suggested. Although there are elaborate methods for period estimation, simple autocorrelation 

algorithms perform well enough to take first steps on tuned signals with a prominent 

harmonic structure. A more advanced approach is described in [12]. 

 

Granular synthesis is a superset of segment-based oscillators with the extension that not only 

the segments (called “grains”) but also their time of occurrence is arbitrary. This way, 

harmonic as well as noisy and intermediate phenotypes are generated and morphed 

interactively into each other. It should be mentioned that a Gaussian is often preferred to 

trigonometric windows in this application. 
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Appendix A: Oscillator Selection Guide 
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Sample-based 1.4 + + + N 0.46 0.46 N + + + o N N >100 

VA Sawtooth + Pulse 1.5 + + + Y 0.25 0.33 Y + + + + Y Y 6 

Dito, without table 1.5 + + + Y 0.25 0.33 Y + + + o Y Y 0 

VA Triangle 1.5 + + + Y 0.25 0.33 Y + + + o Y Y 1 

Dito, without table 1.5 + + + Y 0.25 0.33 Y + + + - Y Y 0 

Sinusoidal FM/PM 1.7, 1.9 + + + N 0.46 0.46 N + + + + N Y 0 

Dito, with Feedback 1.9.2 - + - N 0.46 0.46 Y + + + + N Y 0 

Dito, Sawtooth 1.9.3 - + - N 0.46 0.46 Y + + o o N Y 0 

Dito, Triangle 1.9.3 - + - N 0.46 0.46 Y + + o + N Y 0 

Wavetable 1.10 + + + Y 0.46 0.46 N + + + + N Y 6..15 

CF Sinusoidal 2.1.1 o + - N 0.46 0.46 N o - + ++ N N 0 

DF1 Sinusoidal 2.1.2 o o - N 0.46 0.46 N - - + ++ N N 0 

Chamberlin Sinusoidal 2.1.3 o o - N 0.46 0.46 N o - + ++ N N 0 
DSF-BLIT 2.2 + + + N 0.46 0.46 N + + + - N Y 0..30 

Windowed DSF-BLIT 2.2 + + + Y 0.12 0.20 N + + + o Y Y 1..30 

DSF-BLIT Sawtooth 2.2 - + - Y 0.46 0.46 N + o + - N Y 0..30 

DPW, Sawtooth 2.3.1 o + o Y 0.02 0.03 Y + o + ++ N Y 0 

DPW, Triangle 2.3.1 o + o Y 0.08 0.12 Y + o + ++ N Y 0 

SIPS, Sawtooth 2.3.2 + + + Y 0.02 0.03 Y + + + + Y Y 0 

SIPS2, Sawtooth 2.3.2 + + + Y 0.08 0.12 Y + + + + Y Y 0 

CPS 2.4.1 + + + N 0.46 0.46 N + + + o N Y 0 

PS, Triangle 2.4.2 + + + Y 0.46 0.46 Y + + + + N Y 0 

PS, Square 2.4.3 + + + Y 0.14 0.17 Y + + + + N Y 8 

PD-BLIT 2.5 + + + Y 0.46 0.46 Y + + o + Y Y 0 

VOSIM, Formant 2.6.2 + + + Y 0.23 0.23 N + + o + Y Y 0 

Formant Train 2.6.3 + + + Y 0.04 0.05 N + + + + Y Y 0 

WFO 2.6.4 + + + Y 0.23 0.23 N + + + + Y Y 0 

VWFO 2.6.5 + + + Y 0.08 0.23 N + + + o Y Y 0 

WSO-BLIT 2.6.6 + + + Y 0.23 0.23 Y + + + + Y Y 0 

FOF, unlimited 2.6.7 + + - N 0.46 0.46 Y + + + - Y Y 0 

FOF, truncated 2.6.7 + + + N 0.04 0.08 Y + + + o Y Y 0 

FOF, modified 2.6.7 + + + N 0.08 0.12 Y + + + o Y Y 0 

 
Notes:  
 

1. If the maximum fundamental frequency exceeds 0.21fs, it can be extended to span the full 
audio range by switching to a sinusoidal oscillator. For triangle and square wave oscillators a 
lower limit of 0.14fs applies. On double rate systems, the limits become 0.105fs and 0.07fs 
respectively. 

 
2. A comparison of synthesis methods from a complementary viewpoint is given in [14]. 
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Appendix B: MATLAB Code 

1. Bandlimited Impulse Generation using the Windowed Sinc Method 
 

% parameters 

fs = 48000;                   % sample rate 

fc = 18300;                   % brick wall filter cut-off frequency 

rlen = 10;                    % impulse length in sampling intervals 

ppiv = 100;              % points per sampling interval 

beta = 9.0;                    % main window parameter 

apof = 0.9;                    % apodization factor (0 = no apodization, 1 = max) 

apobeta = 0.7;                 % apodization window parameter 

 

% bandlimited impulse generation 

pts = ppiv*rlen+1;            % impulse length in points 

                                % one added to make a symmetrical impulse 

x1 = 0:1:pts-1;              

x2 = rlen*2*(x1 - (pts-1)/2 + 0.00001)/(pts-1);   

x3 = pi*fc/fs*x2; 

h = sin(x3)./x3;               % brickwall filter impulse response             

w = KAISER(pts,beta);         % kaiser window 

g = w.*h';                     % get bandlimited impulse by applying the window 

 

% apodization and normalization 

aw = 1 - apof*KAISER(pts,apobeta); 

g = aw.*g; 

g = g/max(g); 

 

% diagrams 

figure(1); 

subplot(1,2,1);                                   %*** plot bandlimited impulse *** 

plot(x2/2,g); 

axis([-rlen/2 rlen/2 -0.2 1.0001]); 

xlabel('Time in Sampling Intervals'); 

title('Bandlimited Impulse'); 

subplot(1,2,2);                                  %*** plot spectrum *** 

zpad = 20;                                        % zero padding factor 

g2 = [g ; zeros((zpad-1)*pts,1)];                % zero pad for higher resolution 

wspec = abs(fft(g2)); 

wspec = max(wspec/max(wspec), 0.00001); 

fmax = 60000;                                    % maximum displayed frequency 

rng = round(rlen*zpad*fmax/fs); 

xidx = 0:1:rng; 

semilogy(fmax/1000*xidx/rng,wspec(1:(rng+1))); 

xlabel('Frequency in kHz'); 

title('Amplitude Spectrum'); 

grid; 

 

% markers at 20 kHz, fs-20 kHz and fs  

hold;                               

plot([20 20], [0.00001 1], 'g'); 

plot([fs/1000-20 fs/1000-20], [0.00001 1], 'r'); 

plot([fs/1000 fs/1000], [0.00001 1], 'r'); 

hold off; 
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2. Compensation Filter for the High-Frequency Drop of the Bandlimited 
Impulse 

 

Attach it to the end of code in appendix B1. 
 

% prefilter for sample-based oscillators 

figure(2); 

subplot(1,2,1);                                      

fcomp = 21000;                                        % compensate up to this frequency 

rng = 1 + 2*floor(0.5*rlen*zpad*fcomp/fs - 0.5);     % rng must be odd 

xidx = 0:1:rng; 

a = wspec(1:(rng+1)); 

a = 1.0./a; 

ftune = 0.35;                                         % to tune out rounding errors 

f = xidx/(ftune+rlen*zpad);   % frequency relative to fs  

wgt = (rng+1)/2:-1:1;                                 % better fit at low frequencies          

wgt =  1 + wgt.*wgt; 

b = remez(16,2.0*f,a,wgt)                       % calculate 17 taps FIR filter 

[h,w] = freqz(b,1,rlen*zpad,'whole');                % calculate and plot magnitude response 

plot(fs*f/1000,a,0.5*fs*w/pi/1000,abs(h)); 

axis([0 fs/1000 0 max(abs(h))]); 

xlabel('Frequency in kHz'); 

title('Prefilter Magnitude Response'); 

grid; 

 

% check by convolving prefilter and bandlimited impulse 

subplot(1,2,2);                                      

imp = g(1:ppiv:pts);                                  % sample bandlimited impulse at fs 

res = conv(b,imp');                                   % prefilter by convolution 

res = [res zeros(1000-length(res),1)'];             % zero pad for higher resolution 

wspec = abs(fft(res)); 

rng = round(1000*20000/fs);                          % plot overall magnitude response 

xidx = 0:1:rng; 

plot(20*xidx/rng,wspec(1:rng+1)/wspec(1)); 

xlabel('Frequency in kHz'); 

title('Normalized Overall Magnitude Response'); 

grid; 
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3. Bandlimited Sawtooth Segment Generation 

 
% parameters 

fs = 48000;                 % sample rate 

fc = 15000;                 % brickwall filter cutoff frequency 

rlen = 4;                  % impulse length in sampling intervals 

ppiv = 2700;                 % points per sampling interval 

beta = 8.3;                    % main window parameter 

apof = 0.5;                    % apodization factor (0 = no apodization, 1 = max) 

apobeta = 0.5;                 % apodization window parameter 

 

% bandlimited impulse generation 

pts = ppiv*rlen+1;           % impulse length in points = table size in words 

x1 = 0:1:pts-1;              

x2 = rlen*2*(x1 - (pts-1)/2 + 0.00001)/(pts-1);   

x3 = pi*fc/fs*x2; 

h = sin(x3)./x3;             % brickwall filter impulse response             

w = KAISER(pts,beta);     % kaiser window 

g = w.*h';                   % get bandlimited impulse by applying the window 

 

% apodization 

aw = 1.0 - apof*KAISER(pts,apobeta); 

g = aw.*g; 

 

% cumulative sum, normalization 

g = cumsum(g); 

g = 2.0*g/g(pts); 

g(floor(pts/2)+1:pts) = g(floor(pts/2)+1:pts)-2.0; 

g = g/max(g);                %*** desired two-sided segment *** 
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Appendix C: Miscellaneous 

1. DC Trap 

 

Audio signals may pick up a signal-dependent offset (a.k.a. bias) when they are generated or 

processed. A large bias reduces the dynamic range of the system and leads to unexpected, 

although sometimes pleasant, outcomes in nonlinear stages. However, it should be completely 

absent in any final output signal. Adopting the name from radio frequency engineering, we 

call the specific building block that eliminates the bias a DC trap. Analog and digital 

embodiments are depicted in Fig. 111. As the cut-off frequency fg lies far below the sample 

rate fs, we use the approximation e
jωT

 – 1 ≈ jωT with negligible error. Among several 

topologies, the one shown is preferred because the desired audio signal bypasses the filter 

circuitry without quantization and only a single multiplication is performed. A practical 

choice for fg is about 5 Hz, which makes the trap fast enough to track offset changes but 

causes only a moderate attenuation of 0.26 dB and a phase shift of 14° at 20 Hz. 
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Fig. 111: DC Trap 

2. Frequency Update 

 

Some oscillators require a valid pair of the frequency f and its inverse 1/f at any time. 

Fortunately, the inverse doesn’t have to be very precise as it normally only determines the 

bandwidth of the spectrum by defining the stretching factor of a table. If new value pairs 

come in at a submultiple of the sample rate, the following update schemes are recommended: 

 

1. An independent linear fade of f and 1/f between two value pairs that are within one 

octave. In this case, the product is always too high during the transition (max. 12.5 % in 

the middle) and exact at the end. 

 

2. An exponential fade between two value pairs: f[n+1] = λf[n], f
-1

[n+1] = λ
-1

f
-1

[n]. The 

determination of λ and its inverse involves logarithms, which may turn out to be less 

cumbersome than it seems at first because the frequency is derived from a logarithmic 

mapping in synthesizers.  
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